Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x:
\rm \frac{x\log x}{e^{x}}

Answers

Answered by hukam0685
0

Answer:

\frac{d}{dx} \rm \frac{x\log x}{e^{x}}= \frac{ (1 + log \: x -x \: log \: x)}{ {e}^{x} } \\  \\ \\

Step-by-step explanation:

To differentiate the function w.r.t.x:

\rm \frac{x\log x}{e^{x}}

apply U/V rule of differentiation

 \frac{d}{dx}  \frac{u}{v}  =  \frac{v. \frac{du}{dx} -u. \frac{dv}{dx}  }{ {v}^{2} }  \\  \\  \frac{d}{dx} \rm \frac{x\log x}{e^{x}} \:  = \frac{ {e}^{x} . \frac{d(x \: log \: x)}{dx} -(x \: log \: x). \frac{d {e}^{x} }{dx}  }{ {e}^{2x} } \\  \\  = \frac{ {e}^{x} . (x \frac{1}{x} + log \: x) -(x \: log \: x). {e}^{x}}{ {e}^{2x} } \\  \\  = \frac{ {e}^{x} . (1 + log \: x) -(x \: log \: x). {e}^{x}}{ {e}^{2x} } \\  \\ = \frac{ {e}^{x} . (1 + log \: x -x \: log \: x)}{ {e}^{2x} } \\  \\ \\   \frac{d}{dx} \rm \frac{x\log x}{e^{x}}= \frac{ (1 + log \: x -x \: log \: x)}{ {e}^{x} } \\  \\

Hope it helps you.

Similar questions