Math, asked by swanhayden7, 1 day ago

Differentiate using first principal

f(x) =  \sqrt{sin2x}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  \sqrt{sin2x}  \:

So,

\rm :\longmapsto\:f(x + h) =  \sqrt{sin2x + 2h}  \:

By Using, Definition of First Principal, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \: }}

So, on substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{ \sqrt{sin(2x + 2h)}  -  \sqrt{sin2x} }{h}

On rationalizing the denominator, we get

\rm=\displaystyle\lim_{h \to 0} \:  \frac{ \sqrt{sin(2x + 2h)}  -  \sqrt{sin2x} }{h} \times  \frac{\sqrt{sin(2x + 2h)} + \sqrt{sin2x}}{\sqrt{sin(2x + 2h)} + \sqrt{sin2x}}

We know that

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

 \rm  \:  =  \: \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h(\sqrt{sin(2x + 2h)}  +  \sqrt{sin2x})}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{\sqrt{sin(2x + 2h)} +  \sqrt{sin2x}}  \times \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h}

\rm \:=\dfrac{1}{\sqrt{sin2x} +  \sqrt{sin2x}}  \times \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h}

We know that

\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{2x + 2h + 2x}{2} \bigg]sin\bigg[\dfrac{2x + 2h - 2x}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sin\bigg[\dfrac{2h}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sin\bigg[h \bigg]}{h}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \times 2cos\bigg[\dfrac{4x}{2} \bigg] \times 1

\rm \:  =  \:\dfrac{1}{\sqrt{sin2x} } \times cos\bigg[2x\bigg]

\rm \:  =  \:\dfrac{cos2x}{ \sqrt{sin2x} }

Hence,

\rm \:\rm \implies\:\boxed{ \tt{ \:  \frac{d}{dx}  \sqrt{sin2x}   =  \:\dfrac{cos2x}{ \sqrt{sin2x} }  \: }}

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Answered by XxitsmrseenuxX
3

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  \sqrt{sin2x}  \:

So,

\rm :\longmapsto\:f(x + h) =  \sqrt{sin2x + 2h}  \:

By Using, Definition of First Principal, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \: }}

So, on substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{ \sqrt{sin(2x + 2h)}  -  \sqrt{sin2x} }{h}

On rationalizing the denominator, we get

\rm=\displaystyle\lim_{h \to 0} \:  \frac{ \sqrt{sin(2x + 2h)}  -  \sqrt{sin2x} }{h} \times  \frac{\sqrt{sin(2x + 2h)} + \sqrt{sin2x}}{\sqrt{sin(2x + 2h)} + \sqrt{sin2x}}

We know that

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

 \rm  \:  =  \: \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h(\sqrt{sin(2x + 2h)}  +  \sqrt{sin2x})}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{1}{\sqrt{sin(2x + 2h)} +  \sqrt{sin2x}}  \times \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h}

\rm \:=\dfrac{1}{\sqrt{sin2x} +  \sqrt{sin2x}}  \times \displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h}

We know that

\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{2x + 2h + 2x}{2} \bigg]sin\bigg[\dfrac{2x + 2h - 2x}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sin\bigg[\dfrac{2h}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sin\bigg[h \bigg]}{h}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this, we get

\rm \:  =  \:\dfrac{1}{2 \sqrt{sin2x} } \times 2cos\bigg[\dfrac{4x}{2} \bigg] \times 1

\rm \:  =  \:\dfrac{1}{\sqrt{sin2x} } \times cos\bigg[2x\bigg]

\rm \:  =  \:\dfrac{cos2x}{ \sqrt{sin2x} }

Hence,

\rm \:\rm \implies\:\boxed{ \tt{ \:  \frac{d}{dx}  \sqrt{sin2x}   =  \:\dfrac{cos2x}{ \sqrt{sin2x} }  \: }}

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions