Differentiate using substitution method
Attachments:
Answers
Answered by
0
Answer:
Substitute
Answered by
2
Step-by-step explanation:
\begin{gathered}\sqrt{x} = \tan( z ) \\ \sqrt{a} = \tan( \alpha ) \\ \\ y = \tan { }^{ - 1} ( \frac{ \tan(z) + \tan( \alpha ) }{1 - \tan(z) \tan( \alpha ) } ) \\ \\ y = \tan {}^{ - 1} ( \tan(z + \alpha ) ) \\ \\ y = \alpha + z \\ \\ \frac{dy}{dx} = \frac{dz}{dx} = \frac{d}{dx} \tan {}^{ - 1} ( \sqrt{x} ) \\ \\ dy = \frac{1}{2 \sqrt{x} (1 + x)}\end{gathered}
x
=tan(z)
a
=tan(α)
y=tan
−1
(
1−tan(z)tan(α)
tan(z)+tan(α)
)
y=tan
−1
(tan(z+α))
y=α+z
dx
dy
=
dx
dz
=
dx
d
tan
−1
(
x
)
dy=
2
x
(1+x)
1
Similar questions