Math, asked by tejasbenibagde76, 10 months ago

differentiate w.r.t.x​

Attachments:

Answers

Answered by Anonymous
9

AnswEr :

Given Expression,

 \sf \: y =  log \bigg( \sqrt{ \dfrac{1 - sin \: x}{1 + sin \: x} }  \bigg)

We know that,

log(a/b) = log(a) - log(b)

Thus,

 \implies \sf \: y =  log( \sqrt{1 - sin \: x} )  -  log( \sqrt{1 + sin \: x} )

We know that,

 \sf \star \:  \boxed{ \boxed{ \sf   \dfrac{d( log(x)) }{dx} =  \dfrac{1}{x}  }}

Differentiating the above expression w.r.t x,

 \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  \dfrac{1}{ \sqrt{1 - sin \: x} }  \times   \bigg(\dfrac{d( \sqrt{1 - sin \: x)} }{dx} \bigg)  -  \dfrac{1}{ \sqrt{1 + sin \: x} }  \times  \bigg( \dfrac{d( \sqrt{1 + sin \: x}) }{dx}  \bigg)

We know that,

 \sf \star \:  \boxed{ \boxed{ \sf   \dfrac{d(  \sqrt{x} ) }{dx} =  \dfrac{1}{2 \sqrt{x} }  }}

Using Chain Rule,

 \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  \bigg( \dfrac{1}{ \sqrt{1 - sin \: x} }  \times  \dfrac{1}{2 \sqrt{1 - sin \: x} }  \times  \dfrac{d(1   -  sin \: x)}{dx} \bigg)  - \bigg( \dfrac{1}{ \sqrt{1  +  sin \: x} }  \times  \dfrac{1}{2 \sqrt{1  +  sin \: x} }  \times  \dfrac{d(1  +  sin \: x)}{dx} \bigg)

We know that,

 \sf \star \:  \boxed{ \boxed{ \sf   \dfrac{d( sin \: x) }{dx} =  cos \: x  }}

Thus,

 \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  \dfrac{ - cos \: x}{2( \sqrt{1 - sin \: x}) {}^{2}  }  +  \dfrac{cos \: x}{2( \sqrt{1 + sin \: x} ) {}^{2} }  \\  \\  \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  \dfrac{cos \: x}{2}  \bigg[ \frac{1}{1  + sin \: x}   -  \dfrac{1}{1 - sin \: x} \bigg] \\  \\  \longrightarrow \: \sf \:  \dfrac{dy}{dx}  =  \dfrac{cos \: x}{2}   \bigg[  \frac{(1 - sin \: x) - (1 + sin \: x)}{1 -  {sin}^{2}x } \bigg] \\  \\  \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  \dfrac{cos \: x}{ \cancel{2}}  \times  \bigg( -  \dfrac{ \cancel{2}sin \: x}{cos {}^{2} x }  \bigg) \\  \\  \longrightarrow \:  \sf \:  \dfrac{dy}{dx}  =  -  \dfrac{sin \: x}{cos \: x }   \times  \cancel{ \dfrac{cos \: x}{cos \: x} }\\  \\  \longrightarrow \boxed{ \boxed{ \sf \:  \dfrac{dy}{dx}  =  - tan \: x}}

Derivative of the above expression is - tan(x)

Similar questions