Math, asked by dimpaldhande2210, 10 months ago

differentiate w r t x if y=cos (x^2 + a^2)​

Answers

Answered by Anonymous
62

Given :

y=cos(x²+ a²)

To find

dy /dx

Theory :

Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

We have ,

\sf\:y=\cos(x^2+a^2)

\sf\dfrac{dy}{dx}=\dfrac{d\cos(x^2+a^2)}{d(x^2+a^2)}\times\dfrac{x^2+a^2}{dx}

\sf\dfrac{dy}{dx}=\dfrac{d\cos(x^2+a^2)}{d(x^2+a^2)}\times[\dfrac{x^2}{dx}+\dfrac{a^2}{dx}]

\sf\dfrac{dy}{dx}=-\sin(x^2+a^2)\times[2x+0]

\sf\dfrac{dy}{dx}=-\sin(x^2+a^2)\times2x

It is required solution!

\rule{200}2

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n})}{dx}=nx{}^{n-1}

2)\sf\:\frac{d(constant)}{dx}=0

3)\sf\dfrac{d(\cos)}{dx}=-sin\:x

Answered by Anonymous
21

Given ,

The function is y = Cos(x² + a²)

Differentiating with respect to x , we get

 \sf \mapsto \frac{dy}{dx}  =  \frac{dCos( {x}^{2}   + {a}^{2} )}{dy}  \\  \\ \sf \mapsto \frac{dy}{dx}  = -Sin( {x}^{2} +  {a}^{2})  \times  (  \frac{d( {x}^{2} +  {a}^{2})  }{dx} ) \\  \\  \sf \mapsto \frac{dy}{dx}  = -Sin( {x}^{2} +  {a}^{2})  \times 2x

Remmember :

 \sf \mapsto  \frac{d \{Cos(x) \}}{dx}  =  - Sin(x) \\  \\ \sf \mapsto  \frac{d {(x)}^{n} }{dx}  = n {(x)}^{n - 1}\\  \\ \sf \mapsto  \frac{d (Constant)}{dx}  = 0

Similar questions