Math, asked by prajaktachinavalkar, 10 months ago

differentiate w.r.t x log(tan^3x .sin^4x(x^2+7)^7)

Answers

Answered by MaheswariS
6

\textbf{Given:}

y=\log(tan^3x\,sin^4x\,(x^2+7)^7)

\textbf{To find:}

\text{Derivative of y}

\text{Consider,}

y=\log(tan^3x\,sin^4x\,(x^2+7)^7)

\text{Using product rule of logarithm}

y=\log(tan^3x)+\log(sin^4x)+\log(x^2+7)^7

y=\log(tanx)^3+\log(sinx)^4+\log(x^2+7)^7

\text{Using power rule of logarithm}

y=3\,\log(tanx)+4\,\log(sinx)+7\,\log(x^2+7)

\text{Differentiate with respect to x}

\dfrac{dy}{dx}=3(\dfrac{1}{tanx})sec^2x+4(\dfrac{1}{sinx})cosx+7\,(\dfrac{1}{x^2+7})2x

\dfrac{dy}{dx}=3(\dfrac{sec^2x}{tanx})+4\,cotx+7\,(\dfrac{2x}{x^2+7})

\dfrac{dy}{dx}=3(\dfrac{1}{sinx\,cosx})+4\,cotx+7\,(\dfrac{2x}{x^2+7})

\implies\bf\dfrac{dy}{dx}=3\,cosecx\,secx+4\,cotx+\dfrac{14x}{x^2+7}

\therefore\textbf{The derivative of $\bf\log(tan^3x\,sin^4x\,(x^2+7)^7)$ is $\bf\,3\,cosecx\,secx+4\,cotx+\dfrac{14x}{x^2+7}$}

Find more:

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

Similar questions