Math, asked by Anonymous, 8 months ago

Differentiate w.r.t x
 \sf \: f(x) =  \sqrt{x - 1}  +  \sqrt{x + 24 - 10 \sqrt{x - 1} }
a) 0
b) 1/√x - 1
c) 2√(x - 1) - 5
d) None ​

Answers

Answered by nirman95
17

Given:

f(x) =  \sqrt{x - 1}  +  \sqrt{x + 24 - 10 \sqrt{x - 1} }

To find:

Derivative of f(x) w.r.t x

Calculation:

f(x) =  \sqrt{x - 1}  +  \sqrt{x + 24 - 10 \sqrt{x - 1} }

 =  > f(x) =  \sqrt{x - 1}  +  \sqrt{(x - 1)  - 10 \sqrt{x - 1}  + 25}

 =  > f(x) =  \sqrt{x - 1}  +  \sqrt{ {( \sqrt{x - 1)} }^{2} - 2  \times  \sqrt{x - 1} \times 5  +  {(5)}^{2}  }

 =  > f(x) =  \sqrt{x - 1}  +  \sqrt{  {( \sqrt{x - 1} - 5) }^{2} }

 =  > f(x) =  \sqrt{x - 1}  +  \sqrt{ x - 1} - 5

 =  > f(x) =  2\sqrt{x - 1}   - 5

Now , differentiating w.r.t x

 =  > \dfrac{d \{ f(x) \}}{dx} =2 \dfrac{d( \sqrt{x - 1} )}{dx}  -  \dfrac{d(5)}{dx}

 =  > \dfrac{d \{ f(x) \}}{dx} =2 ( \dfrac{1}{2 \sqrt{x - 1} }  ) - 0

 =  > \dfrac{ d \{f(x) \}}{dx} =\dfrac{1}{\sqrt{x - 1} }

So, final answer is:

 \boxed{ \bf{ \red{ \dfrac{ d \{f(x) \}}{dx} =\dfrac{1}{\sqrt{x - 1} }  }}}

Answered by Anonymous
2

Answer:

b

Step-by-step explanation:

please mark as brainliest answer

Similar questions
Math, 1 year ago