Math, asked by harpreetk2194, 4 months ago

Differentiate w.r.t x x3

sinx/cosx​

Answers

Answered by kushagrashankar
0

Answer:

Let y=cosx.cos2x.cos3x

Taking logarithm on both the sides, we obtain

logy=log(cosx.cos2x.cos3x)=log(cosx)+log(cos2x)+log(cos3x)

Differentiating both sides with respect to x, we obtain

y

1

​  

 

dx

dy

​  

=  

cosx

1

​  

.  

dx

d

​  

(cosx)+  

cos2x

1

​  

.  

dx

d

​  

(cos2x)+  

cos3x

1

​  

.  

dx

d

​  

(cos3x)

⇒  

dx

dy

​  

=y[−  

cosx

sinx

​  

−  

cos2x

sin2x

​  

.  

dx

d

​  

(2x)−  

cos3x

sin3x

​  

.  

dx

d

​  

(3x)]

⇒  

dx

dy

​  

=−cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]

Step-by-step explanation:

Similar questions