Math, asked by sejalmirche, 10 months ago

Differentiate with respect to x ​

Attachments:

Answers

Answered by BrainlyPopularman
4

QUESTION :

Differentiate the following w.r.t. 'x'    \:\: \bf {tan}^{ - 1}  \{ \cot(4x) \} \:\:

(a) -4

(b) ¼

(c) 4

(d) - ¼

ANSWER :

GIVEN :

  \\ \:\: \implies \bf y = {tan}^{ - 1}  \{ \cot(4x) \} \:\: \\

TO FIND :

  \\  \implies \bf  \dfrac{dy}{dx}  =  \: ?  \\

SOLUTION :

  \\ \implies \bf y = {tan}^{-1}  \{ \cot(4x) \} \:\: \\

• We know that –

  \\ \dashrightarrow \bf  { \tan}^{-1} (x) +  { \cot }^{ - 1}(x) =  \dfrac{\pi}{2}  \:\: \\

  \\ \dashrightarrow \bf  { \tan}^{-1} (x)=  \dfrac{\pi}{2} -  { \cot }^{ - 1}(x) \\

• So that –

  \\ \implies \bf y =  \dfrac{\pi}{2} -  {cot}^{-1}  \{ \cot(4x) \} \:\: \\

  \\ \implies \bf y =  \dfrac{\pi}{2} -  4x \:\: \\

• Now Differentiate with respect to 'x' –

  \\ \implies \bf  \dfrac{dy}{dx}  = \dfrac{d}{dx} \left(\dfrac{\pi}{2} \right) -   \dfrac{d}{dx} (4x) \:\: \\

  \\ \implies \bf  \dfrac{dy}{dx}  = 0 -   4\dfrac{d}{dx} (x) \:\: \\

  \\ \implies  \large{ \boxed{\bf  \dfrac{dy}{dx}  = - 4 }}\\

▪︎ Hence , Option (a) is correct.

Answered by Anonymous
0

Given ,

The function is

 \sf y =  { \tan}^{ - 1} \{  \cot(4x) \}

Differentiating with respect to x , we get

  \sf \mapsto \frac{dy}{dx}  =  \frac{d  { \tan}^{ - 1} \{  \cot(4x) \}}{dx}  \\  \\ \sf \mapsto  \frac{dy}{dx}  =  \frac{ - 1}{1 +  {( \cot4x)}^{2} }  \times  \frac{d \cot(4x)}{dx}  \\  \\ \sf \mapsto  \frac{dy}{dx}  = \frac{ - 1}{1 +  {( \cot4x)}^{2} }  \times  - 4 {(cosec)}^{2}(4x)

Remmember :

   \star \:  \:  \sf \frac{d { \tan}^{ - 1} (x) }{dx} =  \frac{1}{1 +  {(x)}^{2} }  \\  \\   \star \:  \:  \sf \frac{d \cot(x) }{dx}  =  {(cosec)}^{2}(x)

Similar questions