Math, asked by rabiabharwani82, 20 days ago

differentiate wrt x, find dy/dx.​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  \sqrt[3]{\dfrac{4x - 1}{(2x + 3) {(5 - 2x)}^{2} } }

Taking log on both sides, we get

\rm :\longmapsto\:logy = log \bigg( \sqrt[3]{\dfrac{4x - 1}{(2x + 3) {(5 - 2x)}^{2} } }  \bigg)

We know,

\red{\rm :\longmapsto\: log( {x}^{y} )  = ylogx}

Using this, we get

\rm :\longmapsto\:logy = \dfrac{1}{3} log \bigg(\dfrac{4x - 1}{(2x + 3) {(5 - 2x)}^{2} }   \bigg)

We know,

\red{\rm :\longmapsto\: log(xy) =  log(x)  +  log(y) }

\red{\rm :\longmapsto\: log(\dfrac{x}{y} ) =  log(x)   -   log(y) }

So, using this, we get

\rm :\longmapsto\:logy = \dfrac{1}{3}\bigg(log(4x - 1) - log(2x + 3) - 2log(5 - 2x)\bigg)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} logy =\dfrac{d}{dx} \dfrac{1}{3}\bigg(log(4x - 1) - log(2x + 3) - 2log(5 - 2x)\bigg)

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx}k \: f(x) = k\dfrac{d}{dx}f(x)}

So using this,

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{dy}{dx} =\dfrac{1}{3} \dfrac{d}{dx}\bigg(log(4x - 1) - log(2x + 3) - 2log(5 - 2x)\bigg)

We know,

\boxed{ \rm{ \dfrac{d}{dx}log(ax + b) =  \frac{a}{ax + b}}}

So, using this,

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{dy}{dx} =\dfrac{1}{3} \bigg(\dfrac{4}{4x - 1}  - \dfrac{2}{2x + 3}  + \dfrac{4}{5 - 2x} \bigg)

\rm :\longmapsto\: \dfrac{dy}{dx} =\dfrac{y}{3} \bigg(\dfrac{4}{4x - 1}  - \dfrac{2}{2x + 3}  + \dfrac{4}{5 - 2x} \bigg)

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}(ax + b) = a}}

\boxed{ \rm{ \dfrac{d}{dx}sin(ax + b) = acos(ax + b)}}

\boxed{ \rm{ \dfrac{d}{dx}cos(ax + b) = -  asin(ax + b)}}

\boxed{ \rm{ \dfrac{d}{dx}cosec(ax + b) = -  acosec(ax + b) \: cot(ax + b)}}

\boxed{ \rm{ \dfrac{d}{dx}sec(ax + b) = a \: sec(ax + b) \: tan(ax + b)}}

\boxed{ \rm{ \dfrac{d}{dx}tan(ax + b) = a \: sec^{2} (ax + b) \: }}

\boxed{ \rm{ \dfrac{d}{dx}cot(ax + b) =  -  \: a \: cosec^{2} (ax + b) \: }}

Similar questions