Math, asked by nirmalmvnirmala, 2 months ago

Differentiate
x+cosx/tanx with respect to x.​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

y =  \frac{x +  \cos(x) }{ \tan(x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{ \tan(x)  \frac{d}{dx}( x +  \cos(x) ) - (x +  \cos(x)) \frac{d}{dx}( \tan(x)  ) }{ \tan^{2} (x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{ \tan(x) ( 1 -   \sin(x) ) - (x +  \cos(x)) \sec ^{2} (x)  }{ \tan^{2} (x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{ \tan(x) -    \tan(x) \sin(x)  - x \sec ^{2} (x)  +  \sec(x) }{ \tan^{2} (x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{  \frac{ \sin(x) }{ \cos(x) } -     \frac{ \sin^{2} (x)}{ \cos(x) }  - \frac{ x}{ \cos ^{2} (x)}  +  \frac{1}{ \cos(x)} }{ \tan^{2} (x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{  \frac{ \sin(x)  \cos(x) -  \sin^{2} (x) \cos(x)  - x +  \cos(x)   }{ \cos^{2} (x) }  }{ \tan^{2} (x) }  \\

 \implies \:  \frac{dy}{dx}  =  \frac{   \sin(x)  \cos(x) -  \sin^{2} (x) \cos(x)  - x +  \cos(x)    }{ \sin^{2} (x) }  \\

 \implies \frac{dy}{dx}  =  \cot(x)  -  \cos(x)  - x \cosec ^{2} (x)  +   \cot(x)  \cosec(x)  \\

Similar questions