Math, asked by ua662403, 1 month ago

Differentiate: y=√6x³+4x²​

Attachments:

Answers

Answered by prasannamehta7
1

Answer:

4x^2 (x - 1) - 6x^3 (x^2 - 1)

= 4x^2 (x - 1) - 6x^3 (x + 1)(x - 1)

= (x - 1)(4x^2 - 6x^3 (x + 1))

= -2x^2 (x - 1)(-2 + 3x(x + 1))

= 2x^2 (x - 1)(3x^2 + 3x - 2)

Solve for the roots of 3x^2 + 3x - 2 = 0

Using the quadratic formula,

x = ((-3) +/- sqrt (9 - 4*3 (-2)))/(2 * 3)

x = ((-3) +/- sqrt (33))/6

3x^2 + 3x - 2 = (x - (-3 + sqrt 33)/6)(x -(-3 - sqrt 33)/6)

= (x + (3 - sqrt 33)/6)(x - (3 + sqrt 33)/6)

2x^2 (x - 1)(3x^2 + 3x - 2)

= 2x^2 (x - 1)(x + (3 - sqrt 33)/6)(x - (3 + sqrt 33)/6)

Hope it was helpful

plz mark me as brainliest

Answered by TrustedAnswerer19
6

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

 \green \odot  \:  \:  \frac{d \:  {x}^{n} }{dx}  =  n  {x}^{n - 1}  \\  \green \odot  \:  \:  \:  \frac{d \:  \:  \sqrt{x} }{dx}  =  \frac{1}{2 \sqrt{x} } \\  \\  now\\  \:  \:  \:  \:  \:  \:  \: y =  \sqrt{6 {x}^{3} }  + 4 {x}^{2}  \\   \implies \:  \:  \frac{dy}{dx}  =  \frac{d \: ( \sqrt{6 {x}^{3} }  + 4 {x}^{2}) }{dx}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{d \:  \sqrt{6 {x}^{3} } }{dx}  +  \frac{d \: 4 {x}^{2} }{dx}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{1}{2 \sqrt{6 {x}^{3} } }  \times  \frac{d \: 6 {x}^{3} }{dx}  + 4 \times 2 \times x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{1}{2 \sqrt{6 {x}^{3} } }  \times 6 \times 3 \times  {x}^{2}  + 8x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =   \frac{9 {x}^{2} }{ \sqrt{6 {x}^{3} } }  + 8x

Similar questions