Physics, asked by ua662403, 1 month ago

Differentiate: y=√6x³+4x²​

Attachments:

Answers

Answered by TrustedAnswerer19
27

Answer:

 \green \odot  \:  \:  \frac{d \:  {x}^{n} }{dx}  =  n  {x}^{n - 1}  \\  \green \odot  \:  \:  \:  \frac{d \:  \:  \sqrt{x} }{dx}  =  \frac{1}{2 \sqrt{x} } \\  \\  now\\  \:  \:  \:  \:  \:  \:  \: y =  \sqrt{6 {x}^{3} }  + 4 {x}^{2}  \\   \implies \:  \:  \frac{dy}{dx}  =  \frac{d \: ( \sqrt{6 {x}^{3} }  + 4 {x}^{2}) }{dx}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{d \:  \sqrt{6 {x}^{3} } }{dx}  +  \frac{d \: 4 {x}^{2} }{dx}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{1}{2 \sqrt{6 {x}^{3} } }  \times  \frac{d \: 6 {x}^{3} }{dx}  + 4 \times 2 \times x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =  \frac{1}{2 \sqrt{6 {x}^{3} } }  \times 6 \times 3 \times  {x}^{2}  + 8x \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: =   \frac{9 {x}^{2} }{ \sqrt{6 {x}^{3} } }  + 8x

Similar questions