Differentiate : y = logtan x
Answers
Answered by
1
Applying chain rule
dy/dx =[dy/d(tanx)]×[d(tanx)dx]
=[d(logtanx)/d(tanx)]×[d(tanx)dx]
= (1/tanx)×sec²x
= cotx sec²x = cosecx sec x
dy/dx =[dy/d(tanx)]×[d(tanx)dx]
=[d(logtanx)/d(tanx)]×[d(tanx)dx]
= (1/tanx)×sec²x
= cotx sec²x = cosecx sec x
Similar questions