Math, asked by Azrmehmood1656, 1 month ago

Differentiate y = tan-1(2 − x2)

Answers

Answered by TrustedAnswerer19
56

Answer:

Given,

 \sf \: y =  {tan}^{ - 1} (2 -  {x}^{2} )

We know that,

  \odot \:  \: \sf \:  \frac{d \:  {tan}^{ - 1} x}{dx}  =  \frac{1}{ 1 +  {x}^{2} }  \\  \\  \odot \:  \:  \sf \:  \frac{d {x}^{n} }{dx}  = n {x}^{n - 1}  \\  \\  \odot \:  \: \sf \:  \frac{d \: (constant)}{dx}  = 0 \\  \\  \odot \:  \sf \:  \frac{d \: (u \pm \: v)}{dx}  =  \frac{d \: u}{dx}  \pm \:  \frac{d \: v}{dx}

Now

 \:  \:  \:  \:  \ \sf \: y =  {tan}^{ - 1} (2  -  {x}^{2} )   \\ \sf \therefore \:  \frac{dy}{dx}  =  \frac{d \:  \{  {tan}^{ - 1} (2 -  {x}^{2}) \}}{dx}  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{1  +  {(2 -  {x}^{2} )}^{2} }  \times  \frac{d \: (2 -  {x}^{2} )}{dx}  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{1 + 4 - 4 {x}^{2}  +  {x}^{4} }  \times (0 - 2x) \\ \sf  \therefore \:  \frac{dy}{dx}   =   \frac{ - 2x}{ {x}^{4}  - 4 {x}^{2} + 5 }

Similar questions