Physics, asked by DarkShadow1655, 10 months ago

Differentiate y = x square cos x?

Answers

Answered by Nereida
6

Answer:

Given function : y = x² cos x.

We will use UV method to differentiate the given function.

Here, u = x² and v = cos x.

dy/dx = v du/dx + u dv/dx

➸ d(uv)/dx = cos x * d(x²)/dx + x² * d(cos x)/dx

➸ (x² cos x)' = (cos x * 2x) + (x² * -sin x)

So, differentiation of the function given is : 2x cos x - x² sin x.

RULES USED -

  • y = cos x, dy/dx = sin x.

  • y = xⁿ = nx^{n-1}

  • UV method or Product rule of Differentiation
Answered by Anonymous
12

{\underline{\sf{Given}}}

\sf\:y=x^2\cos\:x

{\underline{\sf{To\:Find}}}

dy/dx

{\underline{\sf{Theory}}}

{\red{\boxed{\large{\bold{Product\:Rule}}}}}

Let u = f(x) and v = g(x) ,then

\sf\:\dfrac{d(uv)}{dx}  =u\dfrac{dv}{dx}+v\dfrac{du}{dx}

{\underline{\sf{Solution}}}

We have,

\sf\:y=x^2\cos\:x

Now Differentiate with respect to x, by chain rule

\implies\sf\dfrac{dy}{dx}=[x^2\dfrac{d(\cos\:x)}{dx}+\cos\:x\times\dfrac{d(x^2)}{dx}]

\implies\sf\dfrac{dy}{dx}=[-x^2\sin\:x+2x\cos\:x]

It is the required solution!

\rule{200}2

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3) \sf\dfrac{d(\cos\:x)}{dx} =-\sin\:x

 \sf4) \dfrac{d(\sin\:x) }{dx}  =\cos\:x

{\red{\boxed{\large{\bold{Composite\: Function (Chain\:Rule)}}}}}

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Similar questions