Physics, asked by priya1681, 8 months ago

differentiate y=x³(x²-2x)with respect to x (by using product rule)​

Answers

Answered by DrNykterstein
4

 \sf \rightarrow \quad y =  {x}^{3} ( {x}^{2}  - 2x) \\  \\ \sf \rightarrow \quad y'  =  \frac{d( {x}^{3}  \cdot ( {x}^{2} - 2x)) }{dx}  \\  \\  \sf \:  \: Applying  \: Product \:  Rule \:  of  \: Differentiation \\   \\  \boxed{\sf \quad  \frac{d( \red{ {x}^{n} }\cdot  \green{x}) }{dx}   =  \green{x }\cdot  \frac{d( \red{ {x}^{n} })}{dx}  +  \red{{x}^{n}  }\cdot  \frac{d( \green{ x}) }{dx} }</p><p>  \\  \\ \sf \rightarrow \quad y'  = \bigg \{ ( {x}^{2}  - 2x) \cdot  \frac{d( {x}^{3} )}{dx}  \bigg \}  +  \bigg \{   {x}^{3}  \cdot  \frac{d( {x}^{2} - 2x) }{dx}  \bigg \} \\  \\  \sf \rightarrow \quad y'   = ( {x}^{2}  - 2x)(3 {x}^{2} ) +  {x}^{3}   \bigg(  \frac{d( {x}^{2}) }{dx}   - 2 \frac{d(x)}{dx} \bigg) \\  \\ \sf \rightarrow \quad y'  =  3 {x}^{4}  - 6 {x}^{3}  +  {x}^{3} (2x - 2) \\  \\  \sf \rightarrow \quad y'   = 3 {x}^{4}  - 6 {x}^{3}  + 2 {x}^{4}  - 2 {x}^{3}  \\  \\ \sf \rightarrow \quad  \boxed{ \blue{ \sf  \pink{y'}  = 5 {x}^{4}  - 8 {x}^{3}} } \\  \\   \\  \underline{ \sf Properties \:  Used} \\  \\   \sf \quad \hookrightarrow  \quad   \frac{d( \red{ {x}^{ \green{n}} })}{dx}  =  \green{n} \cdot  \red{ {x}}^{ \green{n}   - 1}  \\  \\ \sf \quad \hookrightarrow  \quad   \frac{d(  \blue{ a} \red{ {x}^{n} }) }{dx}  =  \blue{a} \cdot  \frac{d(  \red{ {x}^{n} })}{dx}   \\ \\  \qquad \quad  \sf  \blue{a} = constant

Similar questions