Math, asked by AjayRaghuwanshi, 1 year ago

differentiation cos ² x​

Answers

Answered by vidisha30
1

HEY BUDDY....HERE'S YOUR ANSWER....

Let, y=cos2x.

Let, y=cos2x.Then, y can be written as y=(cosx)2.

Let, y=cos2x.Then, y can be written as y=(cosx)2.Now dydx=d(cosx)2dx

Let, y=cos2x.Then, y can be written as y=(cosx)2.Now dydx=d(cosx)2dx=> dydx=d(cosx)2d(cosx)∙d(cosx)dx [By chain rule]

dydx=d(cosx)2d(cosx)∙d(cosx)dx [By chain rule]=> dydx=2(cosx)1∙(−sinx)

dydx=2(cosx)1∙(−sinx)=> dydx=−2(sinx)(cosx)=−sin2x

dydx=−2(sinx)(cosx)=−sin2xTherefore the differentiation of cos2x is −sin2x.

I hope this was helpful....

Please follow me if you wish to...

Mark my answer as the brainliest one if you found it helpful...


pala64: hi
vidisha30: hi
Similar questions