differentiation cos ² x
Answers
Answered by
1
HEY BUDDY....HERE'S YOUR ANSWER....
Let, y=cos2x.
Let, y=cos2x.Then, y can be written as y=(cosx)2.
Let, y=cos2x.Then, y can be written as y=(cosx)2.Now dydx=d(cosx)2dx
Let, y=cos2x.Then, y can be written as y=(cosx)2.Now dydx=d(cosx)2dx=> dydx=d(cosx)2d(cosx)∙d(cosx)dx [By chain rule]
dydx=d(cosx)2d(cosx)∙d(cosx)dx [By chain rule]=> dydx=2(cosx)1∙(−sinx)
dydx=2(cosx)1∙(−sinx)=> dydx=−2(sinx)(cosx)=−sin2x
dydx=−2(sinx)(cosx)=−sin2xTherefore the differentiation of cos2x is −sin2x.
I hope this was helpful....
Please follow me if you wish to...
Mark my answer as the brainliest one if you found it helpful...
pala64:
hi
Similar questions