Math, asked by sunilvermamahaveerat, 9 months ago

Differentiation find
x(x + 1) \ {e}^{x}

.​

Answers

Answered by omsamarth4315
3

Answer:

<body bgcolor = black><marquee><font color = red >the answer is in attachment.

hope it helps ✔✔

Attachments:
Answered by BrainlyPopularman
3

ANSWER :

  \:  \frac{dy}{dx}  \:  = ( {x}^{2}  + 3x + 1) {e}^{x}  \\

EXPLANATION :

▪︎ According to the question –

Let the function

 \\ \: y \:  = x(x + 1) {e}^{x}  \\

 \\ \: y \:  = ( {x}^{2}  + x) {e}^{x}  \\

• Now Different with respect to 'x'

 \\ \:  \frac{dy}{dx}  \:  = ( {x}^{2}  + x) {e}^{x}  + (2x + 1) {e}^{x}  \\

 \\ \:  \frac{dy}{dx}  \:  = ( {x}^{2}  + x  + 2x + 1) {e}^{x}  \\

 \\ \:  \frac{dy}{dx}  \:  = ( {x}^{2}  + 3x + 1) {e}^{x}  \\

USED FORMULA :

 \\ \: (1) \frac{d( {x}^{n} )}{dx}  \:  = n {x}^{n - 1}   \\

 \\ \: (2) \:  \frac{d( {e}^{x} )}{dx}  \:  =  {e}^{x}    \\

 \\ \: (3) \:  \frac{d(U.V)}{dx}  \:  = U \frac{d(V)}{dx} + V \frac{d(U)}{dx} \\

Similar questions