differentiation of sinx^cos3x
Answers
Answered by
1
we know a formula :
d/dx(u^v) = u^v × d/dx (v.logu)
in this case we have u=sinx and v=cos3x.
now ,
d/dx(sinx^cos3x)=sinx^cosx ×[d/dx{cos3x .log(sinx)}] =sin^cos3x.[ cos3x.d/dx(logsinx)+log sinx.d/dx(cos3x)]
=sinx^cos3x.[cos3xcosx/sinx+3logsinx.cosx]
this is your answer
please mark me brainliest
thanks. thanks. thanks. thanks. thanks. thanks
d/dx(u^v) = u^v × d/dx (v.logu)
in this case we have u=sinx and v=cos3x.
now ,
d/dx(sinx^cos3x)=sinx^cosx ×[d/dx{cos3x .log(sinx)}] =sin^cos3x.[ cos3x.d/dx(logsinx)+log sinx.d/dx(cos3x)]
=sinx^cos3x.[cos3xcosx/sinx+3logsinx.cosx]
this is your answer
please mark me brainliest
thanks. thanks. thanks. thanks. thanks. thanks
7255987278:
he copy me
Answered by
0
We know that
d/dx(u^v) = u^v × d/dx (v.logu)
We have u= sinx and v = cos3x.
Now,
d/dx(sinx^cos3x) = sinx^cosx ×[d/dx{cos3x .log(sinx)}] = sin^cos3x.[ cos3x.d/dx(logsinx) + log sinx.d/dx(cos3x)] = sinx^cos3x.[cos3xcosx/sinx+3logsinx.cosx]
Similar questions