Physics, asked by ivandsilva5pbcb3p, 1 year ago

differentiation of sinx^cos3x

Answers

Answered by 7255987278
1
we know a formula :
d/dx(u^v) = u^v × d/dx (v.logu)
in this case we have u=sinx and v=cos3x.
now ,
d/dx(sinx^cos3x)=sinx^cosx ×[d/dx{cos3x .log(sinx)}] =sin^cos3x.[ cos3x.d/dx(logsinx)+log sinx.d/dx(cos3x)]
=sinx^cos3x.[cos3xcosx/sinx+3logsinx.cosx]
this is your answer
please mark me brainliest
thanks. thanks. thanks. thanks. thanks. thanks

7255987278: he copy me
7255987278: tum jante hoge
Answered by Normal0Student
0

We know that

d/dx(u^v) = u^v × d/dx (v.logu)

We have u=  sinx and v = cos3x.

Now,

d/dx(sinx^cos3x) = sinx^cosx ×[d/dx{cos3x .log(sinx)}] = sin^cos3x.[ cos3x.d/dx(logsinx) + log sinx.d/dx(cos3x)] = sinx^cos3x.[cos3xcosx/sinx+3logsinx.cosx]



Normal0Student: please mark as brainliest
7255987278: no its me
Similar questions