Math, asked by sriniwaas8874, 1 year ago

differentiation of tan inverse x

Answers

Answered by TVishal
0
d/dx(tan inverse x) = 1/1+(x)square
Answered by MaheswariS
1

Answer:

\frac{d(tan^{-1}x)}{dx}=\frac{1}{1+x^2}

Step-by-step explanation:

Let

y=tan^{-1}x

Take

x=tany

\frac{dx}{dy}=sec^2y

\frac{dx}{dy}=1+tan^2y

\frac{dx}{dy}=1+x^2

Now,

\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}

\frac{dy}{dx}=\frac{1}{1+x^2}

That is,

\frac{d(tan^{-1}x)}{dx}=\frac{1}{1+x^2}

Similar questions