Math, asked by sathwik1338, 1 year ago

expansion of tan inverse x

Answers

Answered by shalini28
0
1/(1+x^2)..........................

Answered by MaheswariS
1

Answer:

tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+........................

Step-by-step explanation:

Expansion of tan inverse x

I have found expansion of tan inverse x by integration method.

we know that the expansion of \frac{1}{1+x}

\frac{1}{1+x}=1-x+x^2-x^3+..............

Replace x by x², we get

\frac{1}{1+x^2}=1-x^2+x^4-x^6+..............

Integrating on both sides we get,

\int{\frac{1}{1+x^2}}\:dx=\int{[1-x^2+x^4-x^6+..............}]\:dx

tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+..............+C

Applying the condition,

tan^{-1}0=0 we get, C=0

Therefore

tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+........................

Similar questions