differentiation of √x - 1/√x
Answers
Answered by
3
Step-by-step explanation:
Let y=√x+1/√x eqn1
For x+∆x, y+∆y=√(x+∆x)+1/(√(x+∆x).
=((x+∆x)+1)((x+∆x)^-0.5)
=(x+∆x+1)(x^-0.5)((1+(∆x/x))^-0.5)
Using binomial theorem,
(x+∆x+1)(x^-0.5)(1-(0.5(∆x/x)))
Hence, y+∆y = (x+∆x+1)((1/√x)-(∆x/2x√x)) eqn2
eqn2-eqn1 gives,
∆y= √x +(∆x/√x) +1/√x -(x∆x/2x√x) - ((∆x)^2/2x√x) - (∆x/2x√x) -√x -(1/√x)
Hence,
∆y = (∆x/√x) - (∆x/2√x) -((∆x)^2/2x√x) - (∆x/2x√x)
∆y/∆x = 1/2√x - (1/2x√x) - (∆x/2x√x)
Applying limit as ∆x -> 0 and Simplifying further,
dy/dx = 1/2√x - (1/2x√x)
Hope this helps.
Answered by
0
Answer:
Let y=√x+1/√x eqn1
For x+∆x, y+∆y=√(x+∆x)+1/(√(x+∆x).
=((x+∆x)+1)((x+∆x)^-0.5)
=(x+∆x+1)(x^-0.5)((1+(∆x/x))^-0.5)
Step-by-step explanation:
Similar questions