Math, asked by Diya1999, 1 year ago

differentiation of x square sin x

Answers

Answered by DINESH621
4
Let f(x)=(x2)(sinx), then f(x)=g(x)×h(x).

The derivative of this function is given by f'(x)=(g'(x)×h(x))+(h'(x)×g(x))

The derivative of g(x) or x2 is g'(x)=2×x2−1=2x

The derivative of h(x) or sinx is h'(x)=cosx.

Applying the product rule:

f'(x)=(g'(x)×h(x))+(h'(x)×g(x))

f'(x)=(2x(sinx))+(x2(cosx))

f'(x)=2xsinx+x2cosx

Hence, the derivative of y=(x2)(sinx) is y'=2xsinx+x2cosx.

Hopefully this helps!


DINESH621: welcome
Diya1999: can you solve this without using limit
DINESH621: i cant undrrstand
Diya1999: f g those are the function of limit
Diya1999: so I was saying can you solve that directly using the formulas
Similar questions