Math, asked by rathodganpat, 2 months ago

differentiation solve : 
y=(x−1)(x2+x+1) 
please​ solve on book​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\:y = (x - 1)( {x}^{2} + x + 1)}

\rm :\longmapsto\:y = (x - 1)( {x}^{2} + x \times 1 +  {1}^{2})

We know,

 \purple{\boxed{ \sf{ \: (x  -  y)( {x}^{2} + xy  +  {y}^{2}) =  {x}^{3} +  {y}^{3}}}}

\rm :\longmapsto\:y =  {x}^{3} -  {1}^{3}

\rm :\longmapsto\:y =  {x}^{3} -  {1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =  \dfrac{d}{dx}({x}^{3} -  {1} )

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{d}{dx}{x}^{3} -  \dfrac{d}{dx}{1}

We know,

  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}} \:  \: and \:  \:  \boxed{ \sf{ \: \dfrac{d}{dx}k = 0}}

Using these, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 3 {x}^{3 - 1}  - 0

\rm :\longmapsto\:\dfrac{dy}{dx} = 3 {x}^{2}

Additional Information :-

\red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

\red{\rm :\longmapsto\:\dfrac{d}{dx} {e}^{x}  =  {e}^{x} }

\red{\rm :\longmapsto\:\dfrac{d}{dx} {a}^{x}  =  {a}^{x}  log(a) }

\red{\rm :\longmapsto\:\dfrac{d}{dx}logx = \dfrac{1}{x}}

\red{\rm :\longmapsto\:\dfrac{d}{dx} \sqrt{x}  = \dfrac{1}{2 \sqrt{x} }}

\red{\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}secx =  \: secx \: tanx}

\red{\rm :\longmapsto\:\dfrac{d}{dx}tanx =  {sec}^{2}x}

\red{\rm :\longmapsto\:\dfrac{d}{dx}cotx =  { -  \: cosec}^{2}x}

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions