Physics, asked by aryan9467, 1 year ago

Differentiation -

y = sin√x + √sinx

NO SPAM

QUALITY ANSWER NEEDED​

Answers

Answered by Anonymous
7

Given :

y=sin\sqrt{x}+\sqrt{sinx}

\implies \dfrac{dy}{dx}=\dfrac{d}{dx}[sin\sqrt{x}+\sqrt{sinx}]\\\\\implies \dfrac{d}{dx}[(sinx)^{1/2}+\sqrt{sinx}]

Apply chain rule now and proceed :

\implies \dfrac{d}{dx}[\dfrac{1}{2}sin^{1/2-1}x.\dfrac{d}{dx}sinx+cos\sqrt{x}.\dfrac{d}{dx}\sqrt{x}]

\implies \dfrac{1}{2}sin^{-1/2}x.cosx+cos\sqrt{x}(\dfrac{1}{2}x^{1/2-1})\\\\\implies \dfrac{1}{2sin\sqrt{x}}.cosx+cos\sqrt{x}\times \dfrac{1}{2\sqrt{x}}\\\\\implies \dfrac{cosx}{2sin\sqrt{x}}+\dfrac{cos\sqrt{x}}{2\sqrt{x}}\\\\\implies \dfrac{cos\sqrt{x}}{2}(\dfrac{cos\sqrt{x}}{sin\sqrt{x}}+\dfrac{1}{\sqrt{x}})\\\\\implies \boxed{\dfrac{cos\sqrt{x}}{2}(cot\sqrt{x}+\dfrac{1}{\sqrt{x}})}

Answered by CUTESTAR11
2

Hey dear ‼️

plzz refer to the attached file..

keep loving..❤️❤️❤️❤️❤️✌️

Attachments:
Similar questions