Math, asked by ishan01kapoor, 11 months ago

differnetiate using chain rule:- √sin√x​

Answers

Answered by Anonymous
7

Answer:

\large\boxed{\sf{\dfrac{ \cot( \sqrt{x} ) }{4 \sqrt{x} }}}

Step-by-step explanation:

y =  \sqrt{ \sin( \sqrt{x} ) }

Let's assume,

 t = \sqrt{x }

Differentiating both sides,

 =  >  \frac{dt}{dx} =  \frac{1}{2 \sqrt{x} }

Also, let's assume,

u =  \sin( \sqrt{x} )  \\  \\  =  > u =  \sin(t)

Differentiating both sides,

 =  >  \frac{du}{dt}  =  \cos(t)

Therefore, we have,

y =  \sqrt{u}

Differentiating both sides,

 =  >  \frac{dy}{du}  =   \frac{1}{2 \sqrt{u} }

Therefore, we have,

  =  > \frac{dy}{dx} =  \frac{dy}{du}   \times  \frac{du}{dt}  \times  \frac{dt}{dx}  \\  \\  =  >  \frac{dy}{dx}  =  \frac{1}{2 \sqrt{u} }  \times  \cos(t)  \times  \frac{1}{2  \sqrt{x} }  \\  \\  =  >  \frac{dy}{dx}  =  \frac{ \cos(t) }{4 \sqrt{ux} }  \\  \\  =  >  \frac{dy}{dx}  =  \frac{ \cos( \sqrt{x} ) }{4 \sqrt{x} \sin( \sqrt{x} )  } \\  \\  =  >  \frac{dy}{dx}   =  \frac{ \cot( \sqrt{x} ) }{4 \sqrt{x} }

Answered by sphoorthisri
0

Answer:

4 square root of x

Step-by-step explanation:

Similar questions
Math, 5 months ago