Physics, asked by sumanchhatrari121, 10 months ago

diffrentitate x^sinx .w.r.t.x.

Answers

Answered by ambarkumar1
2

y =  {x}^{sinx}

Taking log both sides

logy = sinx \times logx

Apply differentiation

 \frac{1}{y}  \frac{dy}{dx}  = sinx \frac{d}{dx} (logx) + logx \frac{d}{dx} (sinx)

 \frac{1}{y}  \frac{dy}{dx}  = sinx( \frac{1}{x} ) + logxcosx

 \frac{dy}{dx}  = y( \frac{sinx}{x}  + logxcosx)

 \frac{dy}{dx}  =  {x}^{sinx} ( \frac{sinx}{x}  + logxcosx)

Please mark me brainliest if my answer was correct.

Similar questions