Science, asked by gemshectorentoma, 2 days ago

Directions: On a separate sheet of paper, answer the following: 1. Determine the genotype and phenotype of the offspring when pink flower is crossed to a white flower.​

Attachments:

Answers

Answered by milk5000milk
1

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given equation is

\begin{gathered}\rm \: \frac{a}{x - b} + \frac{b}{x - a} = 2 \\ \end{gathered}

x−b

a

+

x−a

b

=2

can be further rewritten as

\begin{gathered}\rm \: \frac{a}{x - b} + \frac{b}{x - a} = 1 + 1\\ \end{gathered}

x−b

a

+

x−a

b

=1+1

can be further rearrange as

\begin{gathered}\rm \: \frac{a}{x - b} - 1 + \frac{b}{x - a} - 1 = 0\\ \end{gathered}

x−b

a

−1+

x−a

b

−1=0

\begin{gathered}\rm \: \frac{a - (x - b)}{x - b} + \frac{b - (x - a)}{x - a} = 0\\ \end{gathered}

x−b

a−(x−b)

+

x−a

b−(x−a)

=0

\begin{gathered}\rm \: \frac{a - x + b}{x - b} + \frac{b - x + a}{x - a} = 0\\ \end{gathered}

x−b

a−x+b

+

x−a

b−x+a

=0

can be rewritten as .

\begin{gathered}\rm \: \frac{a+ b - x}{x - b} + \frac{a + b - x}{x - a} = 0\\ \end{gathered}

x−b

a+b−x

+

x−a

a+b−x

=0

\begin{gathered}\rm \: (a + b - x)\bigg[\dfrac{1}{x - b} + \frac{1}{x - a} \bigg] = 0 \\ \end{gathered}

(a+b−x)[

x−b

1

+

x−a

1

]=0

\begin{gathered}\rm \: (a + b - x)\bigg[\dfrac{x - a + x - b}{(x - b)(x - a)}\bigg] = 0 \\ \end{gathered}

(a+b−x)[

(x−b)(x−a)

x−a+x−b

]=0

\begin{gathered}\rm \: (a + b - x)\bigg[\dfrac{2x - a - b}{(x - b)(x - a)}\bigg] = 0 \\ \end{gathered}

(a+b−x)[

(x−b)(x−a)

2x−a−b

]=0

\begin{gathered}\rm \: (a + b - x)(2x - a - b) = 0 \\ \end{gathered}

(a+b−x)(2x−a−b)=0

\begin{gathered}\rm\implies \: \: x = a + b \: \: \: \: \: or \: \: \: \: \: \: x = \frac{a + b}{2} \\ \end{gathered}

⟹x=a+borx=

2

a+b

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions