Physics, asked by kulkarninaman328, 10 months ago

discuss the formation of standing waves in closed pipe. hence show that the ratio of frequency is 1:3:5 ​

Answers

Answered by nirman95
98

Answer:

To prove:

Formation of standing waves in a closed pipe is in the ratio of 1:3:5 .....

Concept:

Closed pipe refers to a pipe which is closed on 1 side and open on the other side. This means that on the open side , there will be formation of anti-nodes and the closed sides will form nodes.

Calculation:

In the 1st case :

  \therefore \: \frac{ \lambda}{4}  = l \\  =  >  \lambda = 4l

freq_{1} =  \dfrac{velocity}{wavelength}  \\  =  > freq_{1} =  \dfrac{v}{4l} ...............(1)

For 2nd case :

  \therefore \: \frac{ \lambda}{4} +  \frac{ \lambda}{2}   = l \\  =  >  \lambda =  \frac{4l}{3}

freq_{2}=  \dfrac{velocity}{wavelength}  \\  =  > freq_{2} =  \dfrac{3v}{4l} ...............(2)

For 3rd case :

  \therefore \: \frac{ \lambda}{4} +  \frac{ \lambda}{2} +  \frac{ \lambda}{2}    = l \\  =  >  \lambda =  \frac{4l}{5}

freq_{3}=  \dfrac{velocity}{wavelength}  \\  =  > freq_{3} =  \dfrac{5v}{4l} ...............(3)

So the required ratio are :

 \boxed{ \huge{ \red{1 \:   : 3 \:  : 5}}}

Attachments:
Answered by Anonymous
76

\huge  {\red{\boxed{ \overline{ \underline{ \mid\mathfrak{An}{\mathrm{sw}{ \sf{er}}   \colon\mid}}}}}}

Formula for Wavelength of Closed organ pipe is :

\large{\boxed{\boxed{\sf{\lambda \: = \: \dfrac{4L}{2n \: - \: 1}}}}}

First Mode of Vibration

Put n = 1

\implies {\sf{λ_1\: = \: \dfrac{4L}{2(1) - 1}}} \\ \\ \implies {\sf{λ_1 \: = \: \dfrac{4L}{2-1}}} \\ \\ \implies {\sf{λ_1 \:  = \: \dfrac{4L}{1}}} \\ \\ \implies {\sf{L \: = \: \dfrac{λ_1}{4}}} \\ \\ {\boxed {\sf{\nu _1 \: = \: \dfrac{v}{4L}}}}

__________________________________

Second Mode of Vibration

Put n = 2

\implies {\sf{λ_2 \: = \: \dfrac{4L}{2(2) \: - \: 1}}} \\ \\ \implies {\sf{λ_2 \: = \: \dfrac{4L}{4 \: - \: 1}}} \\ \\ \implies {\sf{λ_2 \: = \: \dfrac{4L}{3}}} \\ \\ {\boxed{\sf{\nu _2 \: = \: 3 \nu _1}}}

___________________________

Put n = 3

\implies {\sf{λ_3 \: = \: \dfrac{4L}{2(3) \: - \: 1}}} \\ \\ \implies {\sf{λ_3 \: = \: \dfrac{4L}{6 \: - \: 1}}} \\ \\ \implies {\sf{λ_3 \: = \: \dfrac{4L}{5}}} \\ \\ {\boxed{\sf{\nu _3 \: = \: 5 \nu _1}}}

__________________________________

For Ratio Divide all the Frequencies :

\implies {\sf{Ratio \: = \: \dfrac{\nu_1}{\dfrac{3 \nu_1}{5 \nu _1}}}} \\ \\ \implies {\sf{Ratio \: = \: \dfrac{1}{\dfrac{3}{5}}}} \\ \\ \implies {\sf{Ratio \: = \: 1:3:5}}

Similar questions