Math, asked by mariamfarooq061, 10 months ago

Discuss the Nature of root
2x²-5x +1 =0
its a quadratic equation please solve this problem​

Answers

Answered by Anonymous
1

Answer:-

\sf{Roots \ are \ real \ and \ unequal.}

Given:

  • The given quadratic polynomial is \sf{2x^{2}-5x+1=0}

To find:

Nature of roots.

Solution:-

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{2x^{2}-5x+1=0}}

\sf{Here, \ a=2, \ b=-5 \ and \ c=1}

\sf{Discriminant (\Delta)=b^{2}-4ac}

\sf{\therefore{\Delta=(-5)^{2}-4(2)(1)}}

\sf{\therefore{\Delta=25-8}}

\sf{\therefore{\Delta=17}}

\sf{Here, \ \Delta > \ 0}

\sf\purple{\tt{\therefore{Roots \ are \ real \ and \ unequal.}}}

___________________________________

\sf\blue{Extra \ information:}

\sf{If, \ \Delta=0 \ then, \ Roots \ are \ real \ and \ equal.}

\sf{\Delta \ < \ 0 \ then, Roots \ are \ unreal.}

Similar questions