Physics, asked by raghavs40, 1 year ago

Distance between two points (8,-4) and (0, a) is 10. All the values are in the same unit of length. Find the positive value of a.​

Answers

Answered by BrainIyMSDhoni
20

Answer:

    \boxed{a = 2}

Explanation:

Let P(8,-4) and Q(0,a) be two points distance PQ is 10.

According to distance formula

 \boxed{PQ =  \sqrt{ {(x_{2} - x_{1})}^{2}  + ( {y_{2} - y_{1})}^{2} } } \\   =  > PQ =  \sqrt{ {(0 - 8)}^{2} +  {(a + 4)}^{2}  }  \\  =  > PQ  =  \sqrt{64 + ( {a }^{2} + 16 + 8a) }  \\ =  >   PQ = \sqrt{80 +  {a}^{2}  + 8a}

And we have value of PQ so

On putting the value of PQ

 =  > 10 =  \sqrt{80 +  {a}^{2}  + 8a}  \\  =  >  {a}^{2}  + 8a + 80 = 100 \\  =  >  {a}^{2}  + 8a = 100 - 80 \\  =  > {a}^{2}  + 8a = 20 \\  =  >  {a}^{2}  + 10a - 2a - 20 = 0 \\  =  > (a - 2)(a + 10) = 0 \\   \bold{when} \\ =  >  a - 2 = 0 \\  =  > \boxed{a = 2} \\   \bold{when} \\  =  > a + 10 = 0 \\  =  >  \boxed{a =  - 10}

Answered by Anonymous
16

 \large \underline{ \underline{ \sf \: Answer  : \:  \:  \: }}

  \star a = 2

 \large \underline{ \underline{ \sf \: Explaination : \:  \:  \: }}

Given ,

  \star \sf \:  \:  Distance = 10  \\</p><p> \star \:  \:  \sf X_{1} = 8 \\ \sf   \star \:  \:   X_{2}  = 0 \\   \star \:  \:  \sf Y_{1} =  - 4  \\  \star \:  \:   \sf  Y_{2} = a

We Know that ,

 \large \fbox{ \fbox{ \sf  \:  \: Distance =   \sf \sqrt{ {( X_{2} - X_{1} )}^{2} +  {(Y_{2} - Y_{1} )}^{2} \:   } \:  \:  \:  \: }}

 \sf  \to 10 =  \sqrt{ {(0 - 8)}^{2} +  { \bigg(a - ( - 4) \bigg)}^{2}  }  \\  \\ \sf  \to 10 =  \sqrt{(64) +  {(a + 4)}^{2} }  \\  \\ \sf  \to  {(10 )}^{2}  =  { \bigg(\sqrt{(64) +  {(a + 4)}^{2} } \:  \bigg)}^{2}  \\  \\ \sf  \to 100 = 64 +  {(a + 4)}^{2}  \\  \\ \sf  \to 36 =  {a}^{2}  +  {(2)}^{2}  + 2 \times a \times 4 \\  \\ \sf  \to 36 =  {a}^{2}  + 16 + 8a \\  \\ \sf  \to  {a}^{2}  + 8a - 20 = 0 \\  \\  \sf  \to {a}^{2}   - 2a + 10a - 20 = 0 \\  \\  \sf  \to a(a - 2) + 10(a - 2) = 0 \\  \\ \sf  \to (a + 10)(a - 2) = 0 \\  \\ \sf  \to a =  - 10 \:  \: or \:  \: a = 2

Thus , the required positive value of a is 2

Similar questions