Math, asked by dev5759, 11 months ago

divide √3a^4+2a^3 - 6a by 3a​

Answers

Answered by NEHAUVARAJ
26

Answer:

this is our answers two ways

Attachments:
Answered by ashishks1912
39

The division of the given expression

\frac{\sqrt{3}a^4+2a^3-6a}{3a}=\frac{a^{3}}{\sqrt{3}}+\frac{2a^2}{3}-2

Step-by-step explanation:

Given that divide the expression \sqrt{3}a^4+2a^3-6a by 3a

To find the division of the given expression :

\frac{\sqrt{3}a^4+2a^3-6a}{3a}

=\frac{\sqrt{3}a^4}{3a}+\frac{2a^3}{3a}+\frac{-6a}{3a}

=\frac{\sqrt{3}a^4a^{-1}}{\sqrt{3}\times \sqrt{3}}+\frac{2a^3a^{-1}}{3}-2aa^{-1} ( using the property \frac{1}{a^m}=a^{-m} )

=\frac{a^{4-1}}{\sqrt{3}}+\frac{2a^{3-1}}{3}-2a^{1-1} ( using the property a^m.a^n=a^{m+n} )

=\frac{a^{3}}{\sqrt{3}}+\frac{2a^{2}}{3}-2a^{0}  ( by x^0=1 )

=\frac{a^{3}}{\sqrt{3}}+\frac{2a^2}{3}-2

Therefore \frac{\sqrt{3}a^4+2a^3-6a}{3a}=\frac{a^{3}}{\sqrt{3}}+\frac{2a^2}{3}-2

Similar questions