Math, asked by sobhanasrikanth, 11 months ago

Divide 3x4 -5x3 + 4x2 + 3x – 5 by x2 -3, and verify the division algorithm.

Answers

Answered by abhi178
18

we have to divide 3x⁴ - 5x³ + 4x² + 3x - 5 by x² - 3

x² - 3 ) 3x⁴ - 5x³ + 4x² + 3x - 5 (3x² - 5x + 13

3x⁴ - 9x²

.....................................

-5x³ + 13x² + 3x

-5x³ + 15x

.....................................................

13x² -12x - 5

13x² - 39

.................................................

-12x + 34

therefore, remainder = -12x + 34

and quotient = 3x² - 5x + 13

verification : using division algorithm, a = bq + r, 0 ≤ r < b

here, a = 3x⁴ - 5x³ + 4x² + 3x - 5

b = x² - 3

q = 3x² - 5x + 13

r = 18x + 34

LHS = 3x⁴ - 5x³ + 4x² + 3x - 5

RHS = bq + r

= (x² - 3)(3x² - 5x + 13) + (-12x + 34)

= 3x⁴ - 5x³ + 13x² - 9x² + 15x - 39 - 12x + 34

= 3x⁴ - 5x³ + 4x² + 3x - 5

here LHS = RHS hence verified

Answered by Anonymous
7

\huge\mathcal{Answer:}

 {x}^{2}  \sqrt{3 {x}^{4} }  - 5 {x}^{3} + 4 {x}^{2}   + 3x - 5|3 {x}^{2} - 5x + 13

3 {x}^{4}  - 9 {x}^{2}

_____________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 - 5 {x}^{3}  + 13 {x}^{2}  + 3x

 -  5 {x}^{3}  + 15x

_______________________________

13 {x}^{2}  - 12x - 5

13 {x}^{2}  - 39

__________________________________

 - 12x + 34

\huge\mathcal{Verification:}

a = bq + r \: o \leqslant r \leqslant b

a = 3 {x}^{4}  - 5 {x}^{3}   + 4 {x}^{2}  + 3x - 5

b =  {x}^{2}  - 3

q =  3{x}^{2}  - 5x + 13

r = 18x + 34

lhs = 3 {x}^{4}  - 5 {x}^{3}  + 4 {x}^{2}  + 3x - 5

rhs = bq + r

 = ( {x}^{2}  - 3)(3 {x}^{2}  - 5x + 13) + ( - 12x + 34)

 = 3 {x}^{4}  - 5 {x}^{3}  + 13 {x}^{2}  - 9 {x}^{2}  + 15x - 39 - 12x + 34

3  {x}^{2}  - 5 {x}^{3}  + 4 {x}^{2}  + 3x - 5

lhs = rhs

Similar questions