Divide 3x4 -5x3 + 4x2 + 3x – 5 by x2 -3, and verify the division algorithm.
Answers
we have to divide 3x⁴ - 5x³ + 4x² + 3x - 5 by x² - 3
x² - 3 ) 3x⁴ - 5x³ + 4x² + 3x - 5 (3x² - 5x + 13
3x⁴ - 9x²
.....................................
-5x³ + 13x² + 3x
-5x³ + 15x
.....................................................
13x² -12x - 5
13x² - 39
.................................................
-12x + 34
therefore, remainder = -12x + 34
and quotient = 3x² - 5x + 13
verification : using division algorithm, a = bq + r, 0 ≤ r < b
here, a = 3x⁴ - 5x³ + 4x² + 3x - 5
b = x² - 3
q = 3x² - 5x + 13
r = 18x + 34
LHS = 3x⁴ - 5x³ + 4x² + 3x - 5
RHS = bq + r
= (x² - 3)(3x² - 5x + 13) + (-12x + 34)
= 3x⁴ - 5x³ + 13x² - 9x² + 15x - 39 - 12x + 34
= 3x⁴ - 5x³ + 4x² + 3x - 5
here LHS = RHS hence verified
_____________________________
⠀⠀⠀⠀⠀⠀⠀⠀⠀
_______________________________
__________________________________