divide 581 among a,b,c so that 4a=5b=7c
Answers
here , we have to divide 581 in A,B,C such that
A + B + C = 581 ...................................(i)
let 4A = 5B = 7C = x
=> A = x / 4
=> B = x / 5
=> C = x / 7
on placing values of A,B,C in eq(i)
we get
(x/4) + (x/5) + (x/7) = 581
=> x * ( (1/4) + (1/5) + (1/7) ) = 581
=> x * ( (35+28+20) / 140 ) = 581 .................LCM (4,5,7) = 140
=> x * (83 / 140) = 581
=> x = 581 * 140 / 83
=> x = 140 * 7 ......................................(ii)
now , from eq(ii)
we get
A = x / 4 = 140 * 7 / 4 = 35 * 7 = 245
B = x / 5 = 140 * 7 / 5 = 28 * 7 = 196
C = x / 7 = 140 * 7 / 7 = 140
PLZ mark me as a BRAINLIST
Answer:
Let A = 100
Therefore 5B = 4A
5B = 4 * 100 = 400
400
B = ----------- => B = 80
5
Then 7C = 5B
7C = 400
C = 400 / 7
400
A : B : C = 100 : 80 : --------
7
700 : 560 : 400
A : B : C = -------------------------
7
A : B : C = 700 : 560 : 400
A : B : C = 70 : 56 : 40
A : B : C = 35 : 28 : 20
A + B + C = 581
35 + 28 + 20 = 83
Therefore A =
83 = 581 581 * 35
= > A = --------------- = 245
35 = A 83
83 = 581 581 * 28
= > B = --------------- = 196
28 = B 83
83 = 581 581 * 20
= > C = ------------- = 140
20 = C 83
For Any Queries Contact :- 8999982145
Step-by-step explanation: