Math, asked by anudesai0709, 10 months ago

Divide 6x^3+13x^2+x-2 by 2x + 1,find quotient and remainder​

Answers

Answered by StarrySoul
26

Solution :

Division of Polynomial!

________________________________

\sf{p(x) = 6 {x}^{3} + 13 {x}^{2} + x - 2}

\sf{g(x) = 2x + 1}

From Long Division Method,

Quotient obtained is :

\sf{Quotient = 3 {x}^{2} + 5x - 2}

\sf{Remainder= 0}

Refer to the attachment!

Verification :

\sf{Dividend = Divisor \times Quotient + Remainder}

\longrightarrow\:\sf{6 {x}^{3} + 13 {x}^{2} + x - 2 = (2x + 1)(3 {x}^{2} + 5x - 2) + 0}

\longrightarrow\:\sf{6 {x}^{3} + 13 {x}^{2} + x - 2 =2x(3 {x}^{2} + 5x - 6) + 1(3 {x}^{2} + 5x - 6)}

\longrightarrow\:\sf{6 {x}^{3} + 13 {x}^{2} + x - 2 = 6 {x}^{3} +10 {x}^{2} - 4x + 3 {x}^{2} + 5x - 2}

\longrightarrow\:\sf{6 {x}^{3} + 13 {x}^{2} + x - 2 = 6 {x}^{3} +13 {x}^{2} + x - 2}

Hence, Verified!

Attachments:
Answered by Anonymous
17

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ QuEstiOn ❚

# Divide (6x^3+13x^2+x-2) by (2x + 1) find quotient and remainder .

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

❚ ANsWeR ❚

✺ Given :

  • dividend = 6x^3+13x^2+x-2
  • divisor = 2x + 1

To FinD :

  • quotient = ?
  • remainder = ?

✺ Explanation :

✏ By L.DM. method :-

\setlength{\unitlength}{1.05 cm}}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){4}}\put(6,6){\line(0,-1){1.8}}\put(6.3,5.4){$6x^3+13x^2+x-2$}\put(4.7,5){$2x+1$}\put(6.3,6.3){$3x^2+5x-2$}\put(6.3,4.8){$6x^3+3x^2$}\put(6.15,4.4){$-\:\:\:\:\:\:-$}\put(6,4.2){\line(1,0){3.5}}\put(7.2,3.9){$10x^2+x-2$}\put(7.2,3.3){$10x^2+5x$}\put(6,2.7){\line(1,0){3.5}}\put(6.95,3){$-\:\:\:\:\:\:\:\:\:\:-$}\put(7.95,2.4){$-4x-2$}\put(7.95,1.9){$-4x-2$}\put(6,1.4){\line(1,0){3.5}}\put(7.95,1.6){$-\:\:\:\:\:\:-$}\put(8.6,1){$0$}\end{picture}

So from here ,

❏ we can see that the remainder is = O

❏ we can see that the quotient is = (3x²+5x-2)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

By Remainder Theorm :-

# f(x) = 6x^3+13x^2+x-2

# g(x) = 2x+1

Now , applying Remainder theorm ,

➩ 2x+1= 0

➩ 2x = -1

➩ x = \dfrac{-1}{2}

∴ Remainder = f( \dfrac{-1}{2} )

\implies Remainder = 6(\dfrac{-1}{2})^3+13(\dfrac{-1}{2})^2+(\dfrac{-1}{2})-2

\implies Remainder =\dfrac{-6}{8}+\dfrac{13}{4}-\dfrac{1}{2})-2

\implies Remainder = \dfrac{-6+26-4-16}{8}

➩ Remainder = 0

Now ,

dividend = ( divisor × quotient ) + remainder

➩ 6x^3+13x^2+x-2 = (2x+1)×quotient + 0

➩ 6x^3+13x^2+x-2 = (2x+1)×quotient

\implies quotient =\dfrac{ 6x^3+13x^2+x-2}{2x+1}

\implies quotient =\dfrac{3x^2(2x+1)+5x(2x+1)-2(2x+1)}{(2x+1)}

\implies quotient =\dfrac{\cancel{(2x+1)}(3x^2+5x-2)}{\cancel{(2x+1)}}

➩quotient = 3x²+5x-2

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions