Math, asked by mkhizembali369, 1 year ago

divide 9400kg between A ,B and C in the ratio 1/3 :1/4 :1/5 respectively.

Answers

Answered by Anjula
7

Answer :

• A:B:C = 1/3 : 1/4 : 1/5

Multiplying Each Ratio by 60.

• A:B:C = 1/3 × 60 : 1/4 × 60 : 1/5 × 60

A:B:C = 20 : 15 : 12

=> Dividing 9400Kg by the Sum of (20 + 15 + 12) = 47

=> 9400 / 47

=> 200

Parts of 9400Kg Respectively

➡ A = 20 × 200 = 4000 Kg

➡ B = 15 × 200 = 3000 Kg

➡ C = 12 × 200 = 2400 Kg

Parts of A , B and C is 4000Kg , 3000Kg and 2400Kg respectively.

Answered by Anonymous
31

AnswEr :

  • Divide 9400 Kg
  • A : B : C = \bf{ \frac{1}{3}  :  \frac{1}{4} : \frac{1}{5} }

▣ A : B : C = \bf{ \frac{1}{3}  :  \frac{1}{4} : \frac{1}{5} }

  • Multiplying each term by 60(LCM of 3,4 and, 5).

▣ A : B : C = \bf{ \frac{1}{3}\times 60  :  \frac{1}{4}\times 60 : \frac{1}{5}\times 60 }

A : B : C = 20 : 15 : 12

━━━━━━━━━━━━━━━━━━━━━━━━

Let the Parts of A , B and C be 20x , 15x and 12x respectively.

A.T.Q.

➟ 20x + 15x + 12x = 9400

➟ 47x = 9400

➟ x = \large\bf{\cancel{\frac{9400}{47}}}

x = 200

━━━━━━━━━━━━━━━━━━━━━━━━

☑ A = 20x = 20 × 200 = 4000 Kg

☑ B = 15x = 15 × 200 = 3000 Kg

☑ C = 12x = 12 × 200 = 2400 Kg

 \large\therefore Parts of A , B and C are 4000Kg , 3000Kg and 2400Kg respectively.

Similar questions