Math, asked by Anonymous, 1 month ago

Divide

 \sf \red{1.} \: 4 \sqrt{10} \: \: by \: \: 2 \sqrt{5}
 \sf \red{2.} \: 12 \sqrt{38} \: \: by \: \: 3 \sqrt{7}
 \sf \red{3.} \: 18 \sqrt{30} \: \: by \: \: 9 \sqrt{6}
Class 9
Mathematics
Chapter 1 ( Number System )​ .

Answers

Answered by tennetiraj86
18

Step-by-step explanation:

Solutions:-

1)Given that 4√10 ÷ 2√5

It can be written as

=> 4√10/2√5

=>(2×2×√2×√5)/(2×√5)

=> 2×√2

=> 2√2

4√10 ÷ 2√5 = 22

2)Given that 12√38 ÷3√7

It can be written as

=> 12√38/3√7

=> (3×4×√38)/(3×√7)

=>(4×√38)/√7

=>4√38/√7

or

On Rationalising the denominator then

=> (4√38)×√7/(√7×√7)

=> (4×√38×√7)/(√7)²

=> 4×√(38×7)/7

=>4×√266/7

=> 4√266/7

12√38 ÷3√7 = 4√38/√7 or 4√266/7

3)Given that : 18√30 ÷ 9√6

It can be written as

=> 18√30 / 9√6

=> (18×√30)/(9×√6)

=> (2×9×√5×√6)/(9×√6)

=> 2×√5

=> 2√5

18√30 ÷ 9√6 = 2√5

Answered by TrustedAnswerer19
62

Answer:

First, we have to know these :

  \odot\:  \:  \sqrt{xy}  =  \sqrt{x} \:   \times  \:  \sqrt{y}  \\  \odot \:  \: x =  \sqrt{x}  \times  \sqrt{x}

Solution :

 \large \red{1)} \\  \frac{4 \sqrt{10} }{2 \sqrt{5} }  \\  =  \frac{2 \times 2 \times  \sqrt{2 \times 5} }{2 \times  \sqrt{5} }  \\  =  \frac{\cancel{2} \times 2 \times  \sqrt{2  } \times  \cancel{\sqrt{5}  }}{ \cancel{2} \times \cancel{  \sqrt{5} } } \\  = 2 \sqrt{2}

 \\

 \large \red{2)} \\  \frac{12 \sqrt{38} }{3 \sqrt{7} }  \\  =  \frac{\cancel{3 }\times 4 \times  \sqrt{38} }{\cancel{3 }\times  \sqrt{7} }  \\  =  \frac{4 \sqrt{38} }{ \sqrt{7} } \\  =  \frac{4 \sqrt{38}  \times  \sqrt{7} }{ \sqrt{7}  \times  \sqrt{7} }   \\ =  \frac{4 \sqrt{38 \times 7} }{7}  \\  =  \frac{4 \sqrt{266} }{7}

 \\

 \large \red{ 3)} \\  \frac{18 \sqrt{30} }{9 \sqrt{6} }  \\  =  \frac{9 \times 2 \times  \sqrt{5 \times 6} }{9 \times  \sqrt{6} }  \\  =  \frac{\cancel{9} \times 2 \times  \sqrt{5} \times  \cancel{\sqrt{6}  }}{\cancel{9} \times  \cancel{\sqrt{6} }}  \\  = 2 \sqrt{5}

Similar questions