Math, asked by shahchitra2602, 1 year ago

Divide the polynomial (6x³ + 11x² - 10x - 7) by the binomial (2x + 1). Write the quotient and the remainder.

Answers

Answered by amitnrw
48

Answer:

Quotient = 3x² + 4x - 7

Remainder = 0

Step-by-step explanation:

Divide the polynomial (6x³ + 11x² - 10x - 7) by the binomial (2x + 1). Write the quotient and the remainder.

6x³ + 11x² - 10x - 7

= 6x³ + 3x² + 8x²  + 4x  - 14x - 7  + 0

= 3x²(2x + 1) + 4x(2x + 1) - 7(2x + 1) + 0

= (3x² + 4x - 7)(2x+1) + 0

((6x³ + 11x² - 10x - 7)/(2x + 1)

=  ((3x² + 4x - 7)(2x+1) + 0) / (2x + 1)

Cancelling 2x + 1 from numerator & denominator

= 3x² + 4x - 7  

Quotient = 3x² + 4x - 7

Remainder = 0

Answered by Fatimakincsem
17

Answer:

Quotient = 3x² + 4x - 7  

Remainder = 0  

Step-by-step Explanation:

We will first divide the polynomial with the binomial. Then we will follow the procedure to find out the remainder and the quotient. Whole calculations are as follows.  

Divide the following Polynomial  

(6x³ + 11x² - 10x - 7)  

by the following binomial  

(2x + 1)

For Quotient and Remainder follow the given steps below:  

   6x³ + 11x² - 10x - 7

=  6x³ + 3x² + 8x²  + 4x  - 14x - 7  + 0

=  3x²(2x + 1) + 4x(2x + 1) - 7(2x + 1) + 0

=  (3x² + 4x - 7)(2x+1) + 0

   ((6x³ + 11x² - 10x - 7)/(2x + 1)  

=  ((3x² + 4x - 7)(2x+1) + 0) / (2x + 1)  

Cancelling (2x + 1) from both sides:

=> 3x² + 4x - 7

Quotient = 3x² + 4x - 7  

Remainder =0  

Similar questions