Math, asked by nishchay8b21, 3 months ago

divide these polynomials #GENIUS #TOPPER​

Attachments:

Answers

Answered by chhavitomar76
2

Answer:

(i) ax^2 −ay^2 by ax+ay.

=> is in picture✨✨✨✌✌✌✌

(ii) -x^6+2x^4+4x^3+2x^2 by √2x^2

=> sorry mate i don't know answer of this one sorry

Mark me as brainlist plz

Attachments:
Answered by Anonymous
12

Question given :

  • \sf\implies\:\dfrac{ax^2\:-\:ay^2}{ax\:+\:ay}

  • \sf\implies\:\dfrac{x^6\:+\:2x^4\:+\:4x^3\:+\:2x^2}{\sqrt{2}x^2}

Required solution :

Answer 1 :

  • \sf\implies\:\dfrac{ax^2\:-\:ay^2}{ax\:+\:ay}

  • Take a as common

  • \sf\implies\:\dfrac{a(x^2\:-\:y^2)}{a(x\:+\:y)}

  • Use identity a² - b² = ( a - b )( a + b )

  • \sf\implies\:\dfrac{a(x\:-\:y)(x\:+\:y)}{a(x\:+\:y)}

  • Cancel out a

  • \sf\implies\:\dfrac{(x\:-\:y)(x\:+\:y)}{(x\:+\:y)}

  • Cancel out x + y

  • x - y is the solution

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answer 2 :

  • \sf\implies\:\dfrac{x^6\:+\:2x^4\:+\:4x^3\:+\:2x^2}{\sqrt{2}x^2}

  • Take out x² as common

  • \sf\implies\:\dfrac{x^2(x^4\:+\:2x^2\:+\:4x\:+\:2)}{\sqrt{2}x^2}

  • Cancel out x²

  • \sf\implies\:\dfrac{x^4\:+\:2x^2\:+\:4x\:+\:2}{\sqrt{2}}

  • Rationalise the denominator

  • \sf\implies\:\dfrac{x^4\:+\:2x^2\:+\:4x\:+\:2}{\sqrt{2}}\:\times\:\dfrac{\sqrt{2}}{\sqrt{2}}

  • \sf\implies\:\dfrac{x^4\:+\:2x^2\:+\:4x\:+\:2\:\times\:\sqrt{2}}{\sqrt{2}\sqrt{2}}

  • Remove the brackets

  • \sf\implies\:\dfrac{\sqrt{2}(x^4)\:+\:\sqrt{2}(2x^2)\:+\:\sqrt{2}(4x)\:+\:\sqrt{2}(2)}{2}
Similar questions