Math, asked by niyateeyadav14, 8 months ago

divide using algorithm x^3+10x^2+24x by x^2 + 6x​

Answers

Answered by llSecreTStarll
38

To Find :

  • we need to divide x³ + 10x² + 24x by x² + 6x.

Solution :

x² + 6x ) x³ + 10x² + 24x ( x + 4

⠀⠀⠀⠀ ⠀x³ + 6x²

⠀⠀⠀⠀⠀ --⠀⠀--⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀4x² + 24x

⠀⠀⠀⠀⠀⠀⠀⠀4x² + 24x

⠀⠀⠀⠀⠀⠀⠀⠀--⠀⠀⠀--⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0

So,

Remainder = 0

Quotient = x + 4

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
4

Step-by-step explanation:

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{2}  + 6x)  \: {x}^{3}  +  {10x}^{2}  + 24x \: (x + 4 \\  \\  \sf  {x}^{3}  +  {6x}^{2}  \\ \dfrac{  \qquad  \:  \:  \:  \:  \: (  - ) \:  \:  \:  \:  \ ( - )    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }{ \sf  \qquad  \qquad \:  \: {4x}^{2}  + 24x}  \\   \\  \sf \qquad \qquad \:  {4x}^{2}  + 24x \\ \dfrac{  \qquad  \qquad \qquad \:  \:  \:  \:  \:  (  - ) \:  \:  \:  \:  \ ( - )    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }{ \qquad \qquad 0}

Here,

  • Remainder = 0

  • Quotient = x + 4
Similar questions