Math, asked by Berseria, 1 month ago

Do if you know.

Maths : Indices​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{2^x=3^y=6^{-z}=k}

\sf{\implies\,2=k^{\dfrac{1}{x}}\,\,\,\,3=k^{\dfrac{1}{y}}\,\,\,\,6=k^{-\dfrac{1}{z}}}

Now,

\sf{\dfrac{2\times3}{6}=\dfrac{k^{\dfrac{1}{x}}\cdot\,k^{\dfrac{1}{y}}}{k^{-\dfrac{1}{z}}}}

\sf{\implies\,\dfrac{6}{6}=k^{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}}

\sf{\implies\,k^{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=1}

\sf{\implies\,k^{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=k^{0}}

\sf{\implies\,\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0}

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\: {2}^{x}  =  {3}^{y}  =  {6}^{ - z} \: }

Let assume that

\red{\rm :\longmapsto\: {2}^{x}  =  {3}^{y}  =  {6}^{ - z} \:  = k \:  \:  \: }

So,

\red{\rm :\longmapsto\: {2}^{x}   \:  = k \: \rm \implies\:2 =  {\bigg(k\bigg) }^{\dfrac{1}{x} }  \:  \: }

Again,

\red{\rm :\longmapsto\: {3}^{y}   \:  = k \: \rm \implies\:3 =  {\bigg(k\bigg) }^{\dfrac{1}{y} }  \:  \: }

Also,

\red{\rm :\longmapsto\: {6}^{ - z}   \:  = k \: \rm \implies\:6 =  {\bigg(k\bigg) }^{ -  \: \dfrac{1}{z} }  \:  \: }

Now,

\rm :\longmapsto\:6 = {\bigg(k\bigg) }^{ -  \: \dfrac{1}{z} }

\rm :\longmapsto\:2 \times 3 = {\bigg(k\bigg) }^{ -  \: \dfrac{1}{z} }

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{1}{x} } \times {\bigg(k\bigg) }^{\dfrac{1}{y} } = {\bigg(k\bigg) }^{ -  \: \dfrac{1}{z} }

\rm :\longmapsto\:{\bigg(k\bigg) }^{\dfrac{1}{x}  + \dfrac{1}{y} } = {\bigg(k\bigg) }^{ -  \: \dfrac{1}{z} }

\rm \implies\:\dfrac{1}{x}  + \dfrac{1}{y}  =  - \dfrac{1}{z}

\bf \implies\:\dfrac{1}{x}  + \dfrac{1}{y} +  \dfrac{1}{z}  = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Identities Used :-

\boxed{ \tt{ \:  {x}^{y} = z \: \rm \implies\:x = {\bigg(z\bigg) }^{\dfrac{1}{y} }}}

\boxed{ \tt{ \:  {x}^{m} \:   \times  \:  {x}^{n} \:   =   \: {x}^{m + n}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\boxed{ \tt{ \:  {x}^{m} \:   \div  \:  {x}^{n} \:   =   \: {x}^{m  -  n}  \: }}

\boxed{ \tt{ \:  {( {x}^{m} )}^{n} =  {x}^{mn}  \: }}

\boxed{ \tt{ \:  {x}^{0} = 1  \: }}

Similar questions