Math, asked by mysticd, 1 year ago

do it fast with explaination

Attachments:

Answers

Answered by abhi178
2
2x²/a² - y²/b² -z²/c² =0

2x²/a² = y²/b² + z²/c² ------(1)


-x²/a² -y²/b² + 2z²/c² =0

2z²/c² = y²/b² + x²/a² ------(2)

-x²/a² +2y²/b² -z²/c² =0

2y²/b² = x²/a² + z²/c² -----(3)

if we see deeply , then we find that
x²/a² , y²/b² , and z²/c² are in AP
y²/b², z²/c² and x²/a² are in AP
z²/c², x²/a², and y²/b² are in AP

so, we conclude that ,
x²/a² = y²/b² = z²/c² = K (let )

x² = a² K => x = ±a√k
y² = b²K => y= ± b√k
z² = c²K => z = ±c √k
so, solution will be ,
( +, + , +)
( + , + , -)
(+, -, -)
( -, -, -)
(-, -, +)
( -, +, +)
( +, -, +)
(-, + , -)

so, number of solutions = 8

abhi178: i hope this will correct
mysticd: plz , check another questions
Answered by Anonymous
1

Answer:

2x²/a² - y²/b² -z²/c² =0

2x²/a² = y²/b² + z²/c² ------(1)

-x²/a² -y²/b² + 2z²/c² =0

2z²/c² = y²/b² + x²/a² ------(2)

-x²/a² +2y²/b² -z²/c² =0

2y²/b² = x²/a² + z²/c² -----(3)

if we see deeply , then we find that

x²/a² , y²/b² , and z²/c² are in AP

y²/b², z²/c² and x²/a² are in AP

z²/c², x²/a², and y²/b² are in AP

so, we conclude that ,

x²/a² = y²/b² = z²/c² = K (let )

x² = a² K => x = ±a√k

y² = b²K => y= ± b√k

z² = c²K => z = ±c √k

so, solution will be ,

( +, + , +)

( + , + , -)

(+, -, -)

( -, -, -)

(-, -, +)

( -, +, +)

( +, -, +)

(-, + , -)

so, number of solutions = 8

Similar questions