Math, asked by LostInJordan, 10 months ago

Do it on paper and explain it
If x=3+2√2 find the value of (x-1/x)^3

Answers

Answered by tahseen619
4

Answer:

128√2

Step-by-step explanation:

{\underline{{\text{Given}}}}

x = 3 + 2 \sqrt{2}

{\underline{{\text{To Find:}}}}

(x -  \dfrac{1}{x} ) {}^{3}

{\underline{{\text{Solution:}}}}

First We should find the value of \frac{1}{x}

x = 3 + 2 \sqrt{2}  \\  \\ \text{\text{\text{Or,}}}   \:  \: \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\ \text{ [Rationalizing the denominator }]\\  \\  =  \frac{(3 -  2\sqrt{2}) }{(3 + 2 \sqrt{2})(3 - 2 \sqrt{2})  }  \\  \\  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }   \:  \:  \text{[using  (a+b)(a-b) = } {a}^{2}  - {b}^{2} ]\\  \\ =   \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  =  \frac{3 - 2  \sqrt{2} }{1}    \\  \\ \therefore \:  \frac{1}{x}  = 3 - 2 \sqrt{2}

Now,

(x -  \frac{1}{x} ) {}^{3}   \\ \\   \{ (3 + 2 \sqrt{2} ) - (3 - 2 \sqrt{2} )\} {}^{3}  \\  \\ (3 + 2 \sqrt{2}  - 3  + 2 \sqrt{2} ) {}^{3}  \\  \\  {(4 \sqrt{2} )}^{3}  \\  \\ 64 \times 2 \sqrt{2}  \\  \\ 128 \sqrt{2}  \\  \\   \therefore\text{ The required answer is 128$ \sqrt{2}$ }

{\underline{{\text{ Some Important Formula Of Algebra }}}}

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy\\ \\ {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Similar questions