Physics, asked by meghakatiyar1, 11 months ago

do the question of attachment-​

Attachments:

Answers

Answered by Anonymous
7

Explanation:

26.Evaluate

(a)\;\;{(\vec {A}. \vec {B})}^{2} + {(\vec {A} \times \vec{B})}^{2}\\\\= {|\vec{A}||\vec{B}|\cos \theta }^{2} + {|\vec{A}||\vec{B}|\sin \theta }^{2}\\\\=|\vec{A}||\vec{B}|({\sin}^{2}\theta + {\cos}^{2}\theta)\\\\=\sf{|\vec{A}||\vec{B}|}

(b)\;\;{(\vec {A}. \vec {B})}^{2} - {(\vec {A} \times \vec{B})}^{2}\\\\= {|\vec{A}||\vec{B}|\cos \theta }^{2} -{|\vec{A}||\vec{B}|\sin \theta }^{2}\\\\=|\vec{A}||\vec{B}|({\cos}^{2}\theta - {\sin}^{2}\theta)\\\\=\sf{|\vec{A}||\vec{B}|\cos 2\theta}

Concept Map :-

  • \vec{a}.\vec{b} =   | \vec{a} ||  \vec{b}|  \cos( \theta)

  • \vec{a} \times \vec{b} =   | \vec{a} ||  \vec{b}|  \sin( \theta)

  •  { \cos }^{2}  \alpha  +  { \sin }^{2}  \alpha  = 1

  •  { \cos }^{2}  \alpha  -  { \sin }^{2}  \alpha  =  \cos(2 \alpha )
Similar questions