Math, asked by riyaboddewar15, 1 month ago

don't answer if you don't know​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: prove :- \\ angle \: apc = 90 \: degrees

so \: here \: ap \: is \: bisector \: of \: angle \: bac \: and \: cp \: is \: bisector \: of \: angle \: dca \\ thus \: by \: angle \: bisector \: theorem \\ we \: get \\ angle \: bap = angle \: pac = 1/2 \times angle \: bac \\ ie \: angle \: pac = 1/2 \times \: angle \: bac \\ so \: angle \: bac = 2.angle \: pac \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  (1) \\  \\ similarly  \: \: angle \: dcp = angle \: pca = 1/2 \times angle \: dca \\ ie \: angle \: pca = 1/2 \times angle \: dca \\ so \: angle \: dca = 2.angle \: pca \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

so \: as \: ab || cd \\ by \: interior \: angle \: theorem \\ we \: get \\ angle \: bac + angle \: dca = 180 \\ 2.angle \: pac + 2.angle \: pca = 180 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  from \: (1) \: and \: (2)

ie \: 2(angle \: pac + angle \: pca) = 180 \\ so \: thus \: then \\ angle \: pac + angle \: pca = 90 .\: degrees \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  (3)

now \:by \:  applying \: angle \: sum \: property \: on \: triangle \: apc \\ we \: get \\ angle \: apc + angle \: pac + angle \: pca = 180 \\ ie \: angle \: apc + 90 = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  from \: (3) \\ ie \: angle \: apc = 90 \: degrees \\  \\ hence \: proved

Similar questions