Math, asked by Anonymous, 17 days ago

Don't Delete this question considering to be plagiarised.
Previous question was wrong so had to post it again.

  \sf If \:  the  \: equation  \:4x^3+20x^2-23x+6=0
\sf   \:  have  \: two \:  of \:  the \:  roots \:  \alpha  \: \sf and  \: \beta \:equal\: ,then
  \sf  \:   \boxed{\sf\red{\gamma + {   |\frac{a}{b}| }}}   \sf  \: will  \: be -

\bf Note- Consider,\: \gamma\: as \:third \: root

Answers

Answered by MathCracker
19

Appropriate Question :-

If the equation 4x³ + 20x² - 23x + 6 = 0 have two of the roots  \alpha and  \beta equal, then  \gamma + \frac{\alpha }{\beta} \\ will be :-

Answer :-

  • -5

Step by step explanation :-

Here,

According to the question,

\rm\implies{ \alpha  =  \beta -  -  -  - (1) }

Let,

The roots of the equation be  \alpha , \beta , \gamma .

Given equation : 4x³ + 20x² - 23x + 6 = 0

For making the answer easy we have to take  \sum of x.

After solving we get,

 \sf\implies{ \sum x =  \alpha  +  \beta  +  \gamma  =  -  \frac{20}{4} } \\

From equation (1) we can be write,

\sf\implies{ \sum x =  \alpha  +  \alpha  +  \gamma  =  \frac{ - 20}{4}  = - 5 } \\

Also can be written as,

\sf\implies{2 \alpha  +  \beta  =  - 5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\ \sf\implies{ \beta  =  - 5 - 2 \alpha  -  -  -  - (2)}

Now taking  \sum of xy.

\sf\implies{ \sum xy =  \alpha ( \alpha ) +  \alpha ( \beta ) +  \beta ( \alpha ) =   \frac{ - 23}{4} } \\

Now, it becomes

\sf\implies{ \sum xy =  \alpha  {}^{2}  + 2 \alpha  \beta  =  \frac{ - 23}{4} } \\

Transporting 4 to LHS from RHS, we get

\sf\implies{4( \alpha  {}^{2} + 2 \alpha  \beta)  =  - 23 }  \:  \\  \\ \sf\implies{4 \alpha  {}^{2}  + 8 \alpha  \beta  + 23 = 0}

Substituting equation (2),

\sf\implies{ 4\alpha  {}^{2}  + 8 \alpha( - 5 - 2 \alpha ) + 23 = 0 } \\  \\ \sf\implies{4 \alpha  {}^{2}   - 40 \alpha   - 16 \alpha  {}^{2} + 23 = 0 } \:  \: \:   \\  \\ \sf\implies{12 \alpha  {}^{2} + 40 \alpha  - 23 = 0 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Using factorisation method,

\sf\implies{12 \alpha  {}^{2} - 6 \alpha  + 46 \alpha  - 23 = 0 } \\  \\ \sf\implies{ \alpha  =  \frac{1}{2} ,-  \frac{23}{6}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substituting  \alpha in equation (2),

\sf\implies{ \beta  =  - 5 - 2  \bigg\lgroup \frac{1}{2}  \bigg\rgroup} \\  \\ \sf\implies{ \beta  =  - 5 - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf\implies \red{ \beta  =  - 6} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\implies{ \beta  =  - 5 - 2 \bigg( - \frac{23}{6}  \bigg)} \\  \\ \sf\implies \red{ \beta  =  -  \frac{8}{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Taking  \sum of xyz.

\sf\implies{ \sum xyz =  \alpha  {}^{2}   \beta =  -  \frac{6}{4}   =  -  \frac{3}{2} } \\

Product of roots do not satisfy  \alpha = - \frac{8}{3} \\

So roots are,

\sf\implies{ \frac{1}{2} ,\frac{1}{2}, -  6   } \\

Verification :-

From equation (1)

 \sf \implies{ \alpha  =  \beta }  \:  \:   \\  \\  \sf \implies{ \frac{1}{2}  =  \frac{1}{2} }

 \sf \implies{ \gamma  =  - 6}

We have to find,

 \sf \implies{ \gamma  +  \frac{ \alpha }{ \beta } =  - 6  +  \frac{  \large\frac{1}{2} }{ \large \frac{1}{2} }  } \\  \\  \sf \implies{ - 6 + 1 = \boxed{  - 5}} \:  \:  \:  \:  \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


Aryan0123: Awesome answer !
Similar questions