Math, asked by kiara9514, 9 months ago

don't post irrelevant answers

Attachments:

Answers

Answered by srijansarvshresth135
1

Answer:

ln3/2

Step-by-step explanation:

please mark my answer as brainliest please please please please please please

Attachments:
Answered by saounksh
3

ᴀɴsᴡᴇʀ

\boxed{\red{ \lim_{n\to \infty} \sum\limits_{r=0}^{2n} \frac{r}{{n} ^{2} + {r} ^{2}} =\frac{1}{2}ln(5)}}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

 \lim_{n\to \infty} \sum\limits_{r=0}^{2n} \frac{r}{{n} ^{2} + {r} ^{2}}

 =\lim_{n\to \infty} \sum\limits_{r=0}^{2n} \frac{r}{{n} ^{2}(1 + {(\frac{r}{n}) } ^{2})}

 =\lim_{n\to \infty} \frac{1}{n} \sum\limits_{r=0}^{2n} \frac{\frac{r}{n}}{(1 + {(\frac{r}{n}) } ^{2})}

 =\int_{0}^{2} \frac{xdx}{(1 + {x}^{2})}

 =\frac{1}{2} \int_{0}^{2} \frac{2xdx}{(1 + {x}^{2})}

 =\frac{1}{2}[ln(1+{x}^{2}) ]_{0}^{2}

 =\frac{1}{2}[ln(1+{2}^{2}) -ln(1+{0}^{2})]

 =\frac{1}{2}[ln(5) -ln(1)]

 =\frac{1}{2}[ln(5) -0]

 =\frac{1}{2}ln(5)

Similar questions