Math, asked by yash451255, 5 months ago

# don't spam here.... ​

Attachments:

Answers

Answered by BrainlyEmpire
2

⛦Equation Given :-

  • \leadsto\sf\dfrac{3+x^2}{8+x^2}\sf{=}\dfrac{-3}{4}

⛦To find :-

  • The positive value of the variable.

⛦Solution :-

  • Let us consider x² be = y

A/Q

\dashrightarrow\sf\dfrac{3+y}{8+y}\sf{=}\dfrac{-3}{4}

\dashrightarrow\sf{4(3-y)=-3(8+y)}

{\blue{\text{\sf{[By cross Multiplication]}}}}

\dashrightarrow\sf{12-4y=-24+(-3y)}

\dashrightarrow\sf{12-4y=-24-3y}

\dashrightarrow\sf{-4y+3y=-24-12}

\dashrightarrow\sf{\cancel{-}y=\cancel{-}36}

\dashrightarrow{\underline{\boxed{\sf{\pink{y=36}}}}}

\sf{Thus,y=x^2=36}

\mapsto{\sf{x^2=36}}

\mapsto\sf{x=\sqrt{36}}

\mapsto\sf{x=\sqrt{6\times6}}

\mapsto\sf{x=6}

Therefore, the positive value of the variable is :\sf\red{6}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
23

Answer:

Answer

\dashrightarrow\sf\dfrac{3+y}{8+y}\sf{=}\dfrac{-3}{4}

\dashrightarrow\sf{4(3-y)=-3(8+y)}

\dashrightarrow\sf{12-4y=-24+(-3y)}

\dashrightarrow\sf{12-4y=-24-3y}

\dashrightarrow\sf{-4y+3y=-24-12}

\dashrightarrow\sf{\cancel{-}y=\cancel{-}36}

\dashrightarrow{\underline{\boxed{\sf{\orange{y=36}}}}}

\sf{y=x^2=36}

\mapsto{\sf{x^2=36}}

\mapsto\sf{x=\sqrt{36}}

\mapsto\sf{x=\sqrt{6\times6}}

\mapsto\sf{x=6}

Therefore, the positive value of the variable 6

Similar questions