Physics, asked by Anonymous, 8 months ago

#dont dare to give silly answers☬

Of course u silly answers will be reported..㋡㋡

#my frnd need it..​

Attachments:

Answers

Answered by shadowsabers03
7

Newton's Second Law gives,

\longrightarrow\sf{m\,\dfrac{d^2x}{dt^2}=-\alpha\,x}

\longrightarrow\sf{\dfrac{d^2x}{dt^2}=-\dfrac{\alpha}{m}\,x\quad\quad\dots(1)}

\longrightarrow\sf{\dfrac{\alpha}{m}\,x+\dfrac{d^2x}{dt^2}=0\quad\quad\dots(2)}

This differential equation shows that \sf{x} multiplied with some constant is added to its second derivative wrt \sf{t,} giving zero.

Hence let \sf{x} be in the form,

\longrightarrow\sf{x=A\cos\theta+B\sin\theta\quad\quad\dots(3)}

for some constants \sf{A} and \sf{B.}

Differentiating it wrt \sf{t,}

\longrightarrow\sf{\dfrac{dx}{dt}=\dfrac{d}{dt}\,(A\cos\theta)+\dfrac{d}{dt}\,(B\sin\theta)}

\longrightarrow\sf{\dfrac{dx}{dt}=-A\sin\theta\cdot\dfrac{d\theta}{dt}+B\cos\theta\cdot\dfrac{d\theta}{dt}}

Again differentiating wrt \sf{t,}

\longrightarrow\sf{\dfrac{d^2x}{dt^2}=-\dfrac{d}{dt}\,\left(A\sin\theta\cdot\dfrac{d\theta}{dt}\right)+\dfrac{d}{dt}\,\left(B\cos\theta\cdot\dfrac{d\theta}{dt}\right)}

\begin{aligned}\longrightarrow\sf{\dfrac{d^2x}{dt^2}}=&-\sf{A\left(\cos\theta\left(\dfrac{d\theta}{dt}\right)^2+\sin\theta\cdot\dfrac{d^2\theta}{dt^2}\right)}\\&+\sf{B\left(-\sin\theta\left(\dfrac{d\theta}{dt}\right)^2+\cos\theta\cdot\dfrac{d^2\theta}{dt^2}\right)}\end{aligned}

\begin{aligned}\longrightarrow\sf{\dfrac{d^2x}{dt^2}}=&-\sf{\left[A\cos\theta\left(\dfrac{d\theta}{dt}\right)^2+A\sin\theta\cdot\dfrac{d^2\theta}{dt^2}\right.}\\&+\sf{\left.B\sin\theta\left(\dfrac{d\theta}{dt}\right)^2-B\cos\theta\cdot\dfrac{d^2\theta}{dt^2}\right]}\end{aligned}

\longrightarrow\sf{\dfrac{d^2x}{dt^2}}=-\sf{\left[\big(A\cos\theta+B\sin\theta\big)\left(\dfrac{d\theta}{dt}\right)^2+\big(A\sin\theta-B\cos\theta\big)\,\dfrac{d^2\theta}{dt^2}\right]}

From (3),

\longrightarrow\sf{\dfrac{d^2x}{dt^2}}=-\sf{x\left(\dfrac{d\theta}{dt}\right)^2-\big(A\sin\theta-B\cos\theta\big)\,\dfrac{d^2\theta}{dt^2}}

From (1),

\longrightarrow\sf{\dfrac{\alpha}{m}\,x=\left(\dfrac{d\theta}{dt}\right)^2x+\big(A\sin\theta-B\cos\theta\big)\,\dfrac{d^2\theta}{dt^2}}

Equating corresponding coefficients, we get,

\longrightarrow\sf{\dfrac{\alpha}{m}=\left(\dfrac{d\theta}{dt}\right)^2}

Since \sf{\omega^2=\dfrac{\alpha}{m},}

\longrightarrow\sf{\omega^2=\left(\dfrac{d\theta}{dt}\right)^2}

\longrightarrow\sf{\dfrac{d\theta}{dt}=\omega}

\longrightarrow\sf{d\theta=\omega\,dt}

\longrightarrow\sf{\theta=\omega\,t}

Hence (3) becomes,

\longrightarrow\underline{\underline{\sf{x(t)=A\cos(\omega\,t)+B\sin(\omega\,t)}}}

From (2),

\longrightarrow\sf{\alpha xv+mv\,\dfrac{d^2x}{dt^2}=0}

\longrightarrow\sf{\dfrac{1}{2}\alpha\cdot2xv+\dfrac{1}{2}\,m\cdot2v\cdot\dfrac{d^2x}{dt^2}=0}

\longrightarrow\sf{\dfrac{1}{2}\alpha\cdot\dfrac{d(x^2)}{dx}\cdot\dfrac{dx}{dt}+\dfrac{1}{2}\,m\cdot\dfrac{d\left[\left(\dfrac{dx}{dt}\right)^2\right]}{d\left(\dfrac{dx}{dt}\right)}\cdot\dfrac{d\left(\dfrac{dx}{dt}\right)}{dt}=0}

\longrightarrow\sf{\dfrac{1}{2}\alpha\cdot\dfrac{d(x^2)}{dt}+\dfrac{1}{2}\,m\cdot\dfrac{d\left[\left(\dfrac{dx}{dt}\right)^2\right]}{dt}=0}

\longrightarrow\sf{\dfrac{1}{2}\,m\cdot d\left[\left(\dfrac{dx}{dt}\right)^2\right]+\dfrac{1}{2}\alpha\cdot d(x^2)=0}

On integrating, we get,

\longrightarrow\underline{\underline{\sf{\dfrac{1}{2}\,m\left(\dfrac{dx}{dt}\right)^2+\dfrac{1}{2}\alpha\,x^2=E}}}

for some constant \sf{E.}

The quantity \sf{\dfrac{1}{2}\,\alpha\,x^2} represents the potential energy due to elasticity of the spring at the extension \sf{x.}

Similar questions